語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Statistical Methods for Dynamic Networks.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical Methods for Dynamic Networks./
作者:
Zhu, Xiaojing.
面頁冊數:
1 online resource (179 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-02, Section: B.
Contained By:
Dissertations Abstracts International84-02B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28867519click for full text (PQDT)
ISBN:
9798834091011
Statistical Methods for Dynamic Networks.
Zhu, Xiaojing.
Statistical Methods for Dynamic Networks.
- 1 online resource (179 pages)
Source: Dissertations Abstracts International, Volume: 84-02, Section: B.
Thesis (Ph.D.)--Boston University, 2022.
Includes bibliographical references
Most complex systems in the world are time-dependent and dynamic in nature, many of which are suitable to be modeled as dynamic networks that evolve over time. From the analysis of time-varying social networks to the analysis of functional brain networks in longitudinal study designs, new statistical methods are needed for a better understanding of network dynamics and the underlying complex systems. Our work revolves around statistical modeling, sampling and inference for dynamic networks driven by various applications. Specifically, we develop a class of random graph hidden Markov models (RGHMM) for percolation in noisy dynamic networks to infer the type of phase transitions undergone in epileptic seizures. We also develop a broadly applicable class of coevolving latent space network with attractors (CLSNA) models for characterizing coevolutionary phenomenon in social behaviors, such as flocking and polarization, and use it under the context of American politics to disentangle positive and negative partisanship in affective polarization. Finally, we provide uncertainty quantification in conjunction with estimation of the frequency of motifs in dynamic networks under a certain sampling model, by studying the asymptotics for streaming data applications.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798834091011Subjects--Topical Terms:
517247
Statistics.
Subjects--Index Terms:
Dynamic networksIndex Terms--Genre/Form:
542853
Electronic books.
Statistical Methods for Dynamic Networks.
LDR
:02563nmm a2200373K 4500
001
2356200
005
20230612072235.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798834091011
035
$a
(MiAaPQ)AAI28867519
035
$a
AAI28867519
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Zhu, Xiaojing.
$3
3696680
245
1 0
$a
Statistical Methods for Dynamic Networks.
264
0
$c
2022
300
$a
1 online resource (179 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-02, Section: B.
500
$a
Advisor: Kolaczyk, Eric D.
502
$a
Thesis (Ph.D.)--Boston University, 2022.
504
$a
Includes bibliographical references
520
$a
Most complex systems in the world are time-dependent and dynamic in nature, many of which are suitable to be modeled as dynamic networks that evolve over time. From the analysis of time-varying social networks to the analysis of functional brain networks in longitudinal study designs, new statistical methods are needed for a better understanding of network dynamics and the underlying complex systems. Our work revolves around statistical modeling, sampling and inference for dynamic networks driven by various applications. Specifically, we develop a class of random graph hidden Markov models (RGHMM) for percolation in noisy dynamic networks to infer the type of phase transitions undergone in epileptic seizures. We also develop a broadly applicable class of coevolving latent space network with attractors (CLSNA) models for characterizing coevolutionary phenomenon in social behaviors, such as flocking and polarization, and use it under the context of American politics to disentangle positive and negative partisanship in affective polarization. Finally, we provide uncertainty quantification in conjunction with estimation of the frequency of motifs in dynamic networks under a certain sampling model, by studying the asymptotics for streaming data applications.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Statistics.
$3
517247
650
4
$a
Statistical physics.
$3
536281
650
4
$a
Applied mathematics.
$3
2122814
653
$a
Dynamic networks
653
$a
Statistical methods
653
$a
Random graph hidden Markov models
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0463
690
$a
0217
690
$a
0364
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Boston University.
$b
Mathematics & Statistics GRS.
$3
3288081
773
0
$t
Dissertations Abstracts International
$g
84-02B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28867519
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9478556
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入