語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Development of an Innovative Co-Treatment Technology for Produced Water and Blowdown Water : = a Regional Approach of Water Management for Energy Production.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Development of an Innovative Co-Treatment Technology for Produced Water and Blowdown Water :/
其他題名:
a Regional Approach of Water Management for Energy Production.
作者:
Khajouei, Golnoosh.
面頁冊數:
1 online resource (103 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-05, Section: A.
Contained By:
Dissertations Abstracts International84-05A.
標題:
Barium. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29731013click for full text (PQDT)
ISBN:
9798352977873
Development of an Innovative Co-Treatment Technology for Produced Water and Blowdown Water : = a Regional Approach of Water Management for Energy Production.
Khajouei, Golnoosh.
Development of an Innovative Co-Treatment Technology for Produced Water and Blowdown Water :
a Regional Approach of Water Management for Energy Production. - 1 online resource (103 pages)
Source: Dissertations Abstracts International, Volume: 84-05, Section: A.
Thesis (Ph.D.)--West Virginia University, 2022.
Includes bibliographical references
Freshwater use for power generation represents the second-largest water use globally. In the United States, freshwater withdrawals for thermoelectric power accounted for 38% of the total freshwater withdrawals for all uses in 2010. Cooling systems are the most water-intensive part of the thermoelectric generation process. For instance, one 300 MW power generator required about 20,000 m3/h circulating cooling water. The cooling operation discharges a large volume of wastewater in the form of blowdown water (10-20% of the consumed water) that requires treatment for reuse or surface discharge. Produced water (PW), the fluid which returns to the surface from hydraulic fracturing during oil and gas production, is one of the largest waste streams in the petroleum industry. More than 70 billion barrels of PW were generated globally in 2009, and 21 billion barrels were produced in the US. It was estimated that approximately 1 million gallons per gas well on average was generated in the Marcellus Shale region. In such a region where blowdown and produced waters are often in close proximity, opportunities exist to develop innovative approaches for water recovery and the generation of useful products from co-managing both waters.This research aims at developing a co-treatment process to manage BD water and PW jointly for water recovery and generation of useful products. The treatment process consists of mixing, softening, activated carbon filtration, and reverse osmosis (RO) followed by thermal desalination. It is designed to take advantage of the complimentary chemistry of two waters to create chemical and energy synergisms that reduce the chemical and energy footprints of the treatment process. First, sulfate and carbonate from BD water could form chemical precipitation with scale-forming cations in the PW (e.g., Ca, Ba, Sr), which can be achieved by mixing both waters. Second, the high salt content of PW can increase the TDS concentration of the feed stream to the RO, which in turn generates RO reject with a higher TDS concentration that can be more economically concentrated to 10-lb brine by the thermal desalination. Additional opportunities also exist for using the RO reject or the concentrated brine in electrolysis to generate useful products (e.g., NaOH and Cl2) that can be used for softening and other beneficial uses. The research objectives include 1) development of a co-treatment process and evaluate its feasibility of targeted contaminants removal, treatment footprint reduction, and useful products generation, 2) development of a brine electrolysis system to generate sodium hydroxide and chlorine from the concentrate stream of the co-treatment process, and 3) techno-economic analysis of the co-treatment approach and process optimization.Two treatment scenarios: BD/PW co-treatment and BD water treatment were conducted to evaluate the feasibility and efficiency of the co-treatment compared to the treatment of a single waste stream. Experiments in both scenarios were conducted in batch and continuous operation modes. In all the BD/PW co-treatment experiments, mixing the two streams at a BD: PW volumetric ratio of 10:1 without any chemical addition resulted in >90% Ba removal. In both treatment scenarios, the softening treatment using alkaline chemicals resulted in >99% removal of divalent metals (Ca2+ and Mg2+, Ba2+, and Sr2+), and >90% TOC removal was achieved by activated carbon filtration. RO treatment of the softened mixture resulted in 97-99% TDS rejection and 40-95% water recovery in different experiments.Brine electrolysis using a two-compartment electrochemical cell reliably generated sodium hydroxide (NaOH, pH >12, faradic efficiency 93%) and free chlorine (faradic efficiency 32%) from NaCl solutions. The generated sodium hydroxide was applied alone or combined with sodium carbonate for softening of three produced water samplesFinally, in the last chapter, the techno-economic analysis was conducted in two different ways: 1) economic comparison between two different scenarios on a lab scale using the experimental and 2) techno-economic analysis of the BD/PW co-treatment on a real-world scale using experimental data and data from published works. In addition, a sensitivity analysis was performed on all major costs and revenues to indicate the parameters which have the greatest effect on the economy of the treatment plant.Experimental data along with similarly published works confirmed the feasibility of BD/PW co-treatment. Economics analysis also showed that in terms of chemical consumption, the co-treatment process has a unit chemical cost two times less than the sum of the unit chemical cost of BD water and PW treated separately. In terms of energy consumption for 10-lb brine production, considering that 1) RO has significantly lower energy consumption than thermal desalination, and 2) PW alone cannot be fed into RO due to high TDS, the RO treatment of BD/PW can generate concentrate stream for downstream thermal desalination and 10-lb brine production, more economically than BD alone.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798352977873Subjects--Topical Terms:
3560264
Barium.
Index Terms--Genre/Form:
542853
Electronic books.
Development of an Innovative Co-Treatment Technology for Produced Water and Blowdown Water : = a Regional Approach of Water Management for Energy Production.
LDR
:06510nmm a2200373K 4500
001
2355061
005
20230515064601.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798352977873
035
$a
(MiAaPQ)AAI29731013
035
$a
(MiAaPQ)WVirginia12330
035
$a
AAI29731013
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Khajouei, Golnoosh.
$3
3695448
245
1 0
$a
Development of an Innovative Co-Treatment Technology for Produced Water and Blowdown Water :
$b
a Regional Approach of Water Management for Energy Production.
264
0
$c
2022
300
$a
1 online resource (103 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-05, Section: A.
500
$a
Advisor: Lin, Lian-Shin ; Finklea, Harry O. ; Lima, Fernando ; Garner, Emily.
502
$a
Thesis (Ph.D.)--West Virginia University, 2022.
504
$a
Includes bibliographical references
520
$a
Freshwater use for power generation represents the second-largest water use globally. In the United States, freshwater withdrawals for thermoelectric power accounted for 38% of the total freshwater withdrawals for all uses in 2010. Cooling systems are the most water-intensive part of the thermoelectric generation process. For instance, one 300 MW power generator required about 20,000 m3/h circulating cooling water. The cooling operation discharges a large volume of wastewater in the form of blowdown water (10-20% of the consumed water) that requires treatment for reuse or surface discharge. Produced water (PW), the fluid which returns to the surface from hydraulic fracturing during oil and gas production, is one of the largest waste streams in the petroleum industry. More than 70 billion barrels of PW were generated globally in 2009, and 21 billion barrels were produced in the US. It was estimated that approximately 1 million gallons per gas well on average was generated in the Marcellus Shale region. In such a region where blowdown and produced waters are often in close proximity, opportunities exist to develop innovative approaches for water recovery and the generation of useful products from co-managing both waters.This research aims at developing a co-treatment process to manage BD water and PW jointly for water recovery and generation of useful products. The treatment process consists of mixing, softening, activated carbon filtration, and reverse osmosis (RO) followed by thermal desalination. It is designed to take advantage of the complimentary chemistry of two waters to create chemical and energy synergisms that reduce the chemical and energy footprints of the treatment process. First, sulfate and carbonate from BD water could form chemical precipitation with scale-forming cations in the PW (e.g., Ca, Ba, Sr), which can be achieved by mixing both waters. Second, the high salt content of PW can increase the TDS concentration of the feed stream to the RO, which in turn generates RO reject with a higher TDS concentration that can be more economically concentrated to 10-lb brine by the thermal desalination. Additional opportunities also exist for using the RO reject or the concentrated brine in electrolysis to generate useful products (e.g., NaOH and Cl2) that can be used for softening and other beneficial uses. The research objectives include 1) development of a co-treatment process and evaluate its feasibility of targeted contaminants removal, treatment footprint reduction, and useful products generation, 2) development of a brine electrolysis system to generate sodium hydroxide and chlorine from the concentrate stream of the co-treatment process, and 3) techno-economic analysis of the co-treatment approach and process optimization.Two treatment scenarios: BD/PW co-treatment and BD water treatment were conducted to evaluate the feasibility and efficiency of the co-treatment compared to the treatment of a single waste stream. Experiments in both scenarios were conducted in batch and continuous operation modes. In all the BD/PW co-treatment experiments, mixing the two streams at a BD: PW volumetric ratio of 10:1 without any chemical addition resulted in >90% Ba removal. In both treatment scenarios, the softening treatment using alkaline chemicals resulted in >99% removal of divalent metals (Ca2+ and Mg2+, Ba2+, and Sr2+), and >90% TOC removal was achieved by activated carbon filtration. RO treatment of the softened mixture resulted in 97-99% TDS rejection and 40-95% water recovery in different experiments.Brine electrolysis using a two-compartment electrochemical cell reliably generated sodium hydroxide (NaOH, pH >12, faradic efficiency 93%) and free chlorine (faradic efficiency 32%) from NaCl solutions. The generated sodium hydroxide was applied alone or combined with sodium carbonate for softening of three produced water samplesFinally, in the last chapter, the techno-economic analysis was conducted in two different ways: 1) economic comparison between two different scenarios on a lab scale using the experimental and 2) techno-economic analysis of the BD/PW co-treatment on a real-world scale using experimental data and data from published works. In addition, a sensitivity analysis was performed on all major costs and revenues to indicate the parameters which have the greatest effect on the economy of the treatment plant.Experimental data along with similarly published works confirmed the feasibility of BD/PW co-treatment. Economics analysis also showed that in terms of chemical consumption, the co-treatment process has a unit chemical cost two times less than the sum of the unit chemical cost of BD water and PW treated separately. In terms of energy consumption for 10-lb brine production, considering that 1) RO has significantly lower energy consumption than thermal desalination, and 2) PW alone cannot be fed into RO due to high TDS, the RO treatment of BD/PW can generate concentrate stream for downstream thermal desalination and 10-lb brine production, more economically than BD alone.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Barium.
$3
3560264
650
4
$a
Osmosis.
$3
3211652
650
4
$a
Disinfection & disinfectants.
$3
3695449
650
4
$a
Membrane separation.
$3
664305
650
4
$a
Hydrocarbons.
$3
697428
650
4
$a
Cooling.
$3
1457878
650
4
$a
Gases.
$3
559387
650
4
$a
Resins.
$3
3682318
650
4
$a
Adsorbents.
$3
3695001
650
4
$a
Water treatment.
$3
3683746
650
4
$a
Sodium.
$3
3562677
650
4
$a
Chemical precipitation.
$3
3695450
650
4
$a
Adsorption.
$3
580046
650
4
$a
Chemicals.
$3
1637953
650
4
$a
Groundwater recharge.
$3
3264295
650
4
$a
Magnesium.
$3
2055676
650
4
$a
Irrigation.
$3
778786
650
4
$a
Chlorine.
$3
3566265
650
4
$a
Effluents.
$3
3559973
650
4
$a
Water transportation.
$3
3695451
650
4
$a
Activated carbon.
$3
3685349
650
4
$a
Technology.
$3
531676
650
4
$a
Wetlands.
$3
530463
650
4
$a
Natural gas.
$3
668611
650
4
$a
Ecology.
$3
516476
650
4
$a
Environmental engineering.
$3
548583
650
4
$a
Hydrologic sciences.
$3
3168407
650
4
$a
Transportation.
$3
555912
650
4
$a
Water resources management.
$3
794747
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0329
690
$a
0775
690
$a
0388
690
$a
0709
690
$a
0595
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
West Virginia University.
$3
1017532
773
0
$t
Dissertations Abstracts International
$g
84-05A.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29731013
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9477417
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入