語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Holographic 3D Indoor Localization.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Holographic 3D Indoor Localization./
作者:
Sippel, Erik.
面頁冊數:
1 online resource (158 pages)
附註:
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Contained By:
Dissertations Abstracts International83-09B.
標題:
Receivers & amplifiers. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29133841click for full text (PQDT)
ISBN:
9798209903192
Holographic 3D Indoor Localization.
Sippel, Erik.
Holographic 3D Indoor Localization.
- 1 online resource (158 pages)
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
Thesis (Ph.D.)--Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany), 2022.
Includes bibliographical references
In the last twenty years, mobile communication systems have gone through a tremendous development, increasing the available consumer data rate by several orders of magnitude. Currently, the quickly emerging 5G and particularly the upcoming 6G technology renew the overall concept of communication networks by providing a universal standard, which is able to cover each part of the everyday life. In contrast, localization systems are mainly established within the global positioning system for outdoor navigation, while indoor localization systems are rare, particularly in the consumer sector. This is reasoned in the currently available implementations, which are either exact, but expensive using the broadband or ultra wide band technology or cheap, but very inexact via receive-signal-strength measurements. To deal with this problem, an alternative approach is studied in this thesis, which is based on the evaluation of spatially distributed phase measurements. Usually, spatially distributed phase measurements are recorded via antenna arrays. If the measurement process is incoherent, the phase-difference-of-arrival measurements are typically used to estimate the angle-of-arrival at each receiver, thereby assuming the impinging wave to be plane. Thereafter, the angular information of several receivers can be combined via multiangulation to calculate a beacon's position. This is done either individually for every measurement instances or recursively, for example using the extended Kalman filter. Though this broadly established method appears to be well suited at first glance, it restricts the achievable localization performance of indoor localization systems because of several reasons. First, the angle-of-arrival estimation depicts a non-linear mapping, whose result is only suitable for subsequent position estimation to a very limited extend because of noise shaping. Second, the impinging wave is assumed to be plane, which is only an approximation of the actually wave form, particularly indoors. Third, the localization accuracy mainly depends on the array's aperture size, which is strongly limited by the plane wave assumption. Hence, for highly accurate positioning an alternative approach is necessary, which does not rely on a plane wave assumption and does not perform any non-linear preprocessing, such as angle-of-arrival estimation. To avoid these limitations, holographic localization concepts estimate a beacon's position via brute-force searches, which quickly become computationally expensive in large areas, particularly for 3D positioning. To enable highly accurate, real-time 3D localization, the holographic extended Kalman filter approach is presented in this thesis, which directly evaluates phases or phase differences in a recursive extended Kalman filter based manner. Thus, the preprocessing is reduced to the phase extraction from complex valued signals, which implies minimal noise shaping, and the computation of phase differences, which is a linear mapping. Further, no assumptions about the received wave form are met and, therefore, the array apertures can be arbitrarily increased, strongly improving the achievable localization accuracy. Thereby, the reception of circular waves also reduces the influence of multipath propagation. In this thesis, the generally applicable holographic extended Kalman filter approach is implemented via the phase-difference holographic extended Kalman filter, which only evaluates phase differences and, hence, is applicable in many different applications, and via the quasi-coherent holographic extended Kalman filter, which involves the evaluation of absolute phases by assuming very stable frequency references, enabling extremely accurate tracking of changes of direction. To enable very accurate positioning via spatially distributed phase measurements, antenna arrays are necessary, which provide phase measurements on an equivalent level of accuracy. However, antenna arrays are impaired by channel phase mismatch, mutual coupling, and antenna position deviations. Usually, these are calibrated within anechoic chambers, which suppress the multipath propagation. Unfortunately, the antenna array impairments alter until the receivers are mounted into their final measurement environment. Therefore, an in-situ calibration method is proposed, which calibrates the receivers within the designated localization environment. Similar to the localization, the calibration measurements are performed within the arrays' near field to reduce the influence of the multipath propagation. Altogether, the proposed concepts enable indoor localization measurement with mm accuracy using a 24 GHz narrowband radar system.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798209903192Subjects--Topical Terms:
3559205
Receivers & amplifiers.
Index Terms--Genre/Form:
542853
Electronic books.
Holographic 3D Indoor Localization.
LDR
:10875nmm a2200349K 4500
001
2354413
005
20230414084750.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798209903192
035
$a
(MiAaPQ)AAI29133841
035
$a
(MiAaPQ)FAUErlangen18661
035
$a
AAI29133841
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Sippel, Erik.
$3
3694766
245
1 0
$a
Holographic 3D Indoor Localization.
264
0
$c
2022
300
$a
1 online resource (158 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-09, Section: B.
500
$a
Advisor: Vossiek, Martin.
502
$a
Thesis (Ph.D.)--Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany), 2022.
504
$a
Includes bibliographical references
520
$a
In the last twenty years, mobile communication systems have gone through a tremendous development, increasing the available consumer data rate by several orders of magnitude. Currently, the quickly emerging 5G and particularly the upcoming 6G technology renew the overall concept of communication networks by providing a universal standard, which is able to cover each part of the everyday life. In contrast, localization systems are mainly established within the global positioning system for outdoor navigation, while indoor localization systems are rare, particularly in the consumer sector. This is reasoned in the currently available implementations, which are either exact, but expensive using the broadband or ultra wide band technology or cheap, but very inexact via receive-signal-strength measurements. To deal with this problem, an alternative approach is studied in this thesis, which is based on the evaluation of spatially distributed phase measurements. Usually, spatially distributed phase measurements are recorded via antenna arrays. If the measurement process is incoherent, the phase-difference-of-arrival measurements are typically used to estimate the angle-of-arrival at each receiver, thereby assuming the impinging wave to be plane. Thereafter, the angular information of several receivers can be combined via multiangulation to calculate a beacon's position. This is done either individually for every measurement instances or recursively, for example using the extended Kalman filter. Though this broadly established method appears to be well suited at first glance, it restricts the achievable localization performance of indoor localization systems because of several reasons. First, the angle-of-arrival estimation depicts a non-linear mapping, whose result is only suitable for subsequent position estimation to a very limited extend because of noise shaping. Second, the impinging wave is assumed to be plane, which is only an approximation of the actually wave form, particularly indoors. Third, the localization accuracy mainly depends on the array's aperture size, which is strongly limited by the plane wave assumption. Hence, for highly accurate positioning an alternative approach is necessary, which does not rely on a plane wave assumption and does not perform any non-linear preprocessing, such as angle-of-arrival estimation. To avoid these limitations, holographic localization concepts estimate a beacon's position via brute-force searches, which quickly become computationally expensive in large areas, particularly for 3D positioning. To enable highly accurate, real-time 3D localization, the holographic extended Kalman filter approach is presented in this thesis, which directly evaluates phases or phase differences in a recursive extended Kalman filter based manner. Thus, the preprocessing is reduced to the phase extraction from complex valued signals, which implies minimal noise shaping, and the computation of phase differences, which is a linear mapping. Further, no assumptions about the received wave form are met and, therefore, the array apertures can be arbitrarily increased, strongly improving the achievable localization accuracy. Thereby, the reception of circular waves also reduces the influence of multipath propagation. In this thesis, the generally applicable holographic extended Kalman filter approach is implemented via the phase-difference holographic extended Kalman filter, which only evaluates phase differences and, hence, is applicable in many different applications, and via the quasi-coherent holographic extended Kalman filter, which involves the evaluation of absolute phases by assuming very stable frequency references, enabling extremely accurate tracking of changes of direction. To enable very accurate positioning via spatially distributed phase measurements, antenna arrays are necessary, which provide phase measurements on an equivalent level of accuracy. However, antenna arrays are impaired by channel phase mismatch, mutual coupling, and antenna position deviations. Usually, these are calibrated within anechoic chambers, which suppress the multipath propagation. Unfortunately, the antenna array impairments alter until the receivers are mounted into their final measurement environment. Therefore, an in-situ calibration method is proposed, which calibrates the receivers within the designated localization environment. Similar to the localization, the calibration measurements are performed within the arrays' near field to reduce the influence of the multipath propagation. Altogether, the proposed concepts enable indoor localization measurement with mm accuracy using a 24 GHz narrowband radar system.
520
$a
In den letzten zwanzig Jahren haben Mobilfunkkommunikationssysteme eine enorme Entwicklung erlebt und dabei die verfugbare Endnutzerdatenrate um mehrere Grosenordnungen erhoht. Aktuell wird durch die sich schnell entwickelnde 5G und insbesondere die kommende 6G Technologie das komplette Kommunikationsnetzkonzept erneuert, indem ein einheitlicher Standard zur Verfugung gestellt wird, mit dem sich alle Teile des Alltagslebens abdecken lassen. Im Gegensatz hierzu ist bei Lokalisierungssystemen hauptsachlich das global positioning system fur die Outdoor Navigation verbreitet, wahrend Indoor-Lokalisierungssysteme, insbesondere im Consumer-Bereich, selten sind. Die Begrundung hierfur stellen die aktuell verfugbaren Implementierungen dar, welche entweder mithilfe der Breitband oder ultra wide band Technologie exakt aber teuer oder durch die Auswertung der receive-signal-strength gunstig aber inexakt sind. Um dieses Problem zu uberwinden, wird in dieser Arbeit ein alternativer Ansatz verfolgt, welcher auf der Auswertung raumlich verteilter Phasenmessungen beruht. Normalerweise werden raumlich verteilte Phasenmessungen durch Antennenarrays aufgenommen. Wenn der Messprozess inkoharent ist, wird die Phasendifferenzinformation typischerweise genutzt, um unter einer Fernfeldannahme den Empfangswinkel an jedem Empfanger zu schatzen. Danach kann die Winkelinformation von mehreren Empfangern per Multiangulation kombiniert werden um den Sender zu lokalisieren. Dies wird entweder einzeln fur jede Messung oder rekursiv, zum Beispiel mithilfe eines extended Kalman filter, durchgefuhrt. Obwohl diese weit verbreitete Methode auf den ersten Blick gut geeignet wirkt, beschrankt diese die Lokalisierungsgenauigkeit aus mehreren Grunden. Erstens stellt die Winkelschatzung eine nichtlineare Abbildung dar, deren Ergebnis aufgrund der Rauschverzerrung fur die anschliesende Positionsschatzung nur sehr bedingt geeignet ist. Zweitens werden die einfallenden Wellen als eben angenommen, was insbesondere in Innenraumen nur eine Annaherung der tatsachlichen Wellenform darstellt. Drittens hangt die Lokalisierungsgenauigkeit hauptsachlich von der Aperturgrose des Arrays ab, welche durch die Annahme ebener Wellen stark eingeschrankt ist. Folglich ist fur hochgenaue Lokalisierung ein alternativer Ansatz notwendig, welcher nicht auf Annahme ebener Wellen beruht und keine nicht-lineare Vorverarbeitung wie eine Winkelschatzung benotigt. Um diese Limitierungen zu vermeiden, ermitteln holographische Ortungsverfahren die Position des Beacons durch Brute-Force-Suchen, welche insbesondere fur die 3D-Ortung in grosen Raumen sehr rechenaufwendig werden. Um hochexakte 3D Lokalisierung in Echtzeit zu ermoglichen, wird in dieser Arbeit der holographic extended Kalman filter Ansatz vorgestellt, welcher direkt Phasen oder Phasendifferenzen in einem EKF-basierten Verfahren auswertet. Hier reduziert sich die Vorverarbeitung zu der Ermittlung von Phasenwerten aus komplexwertigen Signalen mit geringer Rauschverzerrung und der linearen Berechnung von Phasendifferenzen. Weiterhin werden keinerlei Annahmen uber die Wellenform getroffen, weshalb die Aperturgrose der Empfangsarrays beliebig erhoht und somit die erreichbare Lokalisierungsgenauigkeit stark verbessert werden kann. Dabei reduziert die Auswertung zirkular geformter Wellen auch den Einfluss von Mehrwegeausbreitung. In dieser Arbeit wird der allgemein einsetzbare holographic extended Kalman filter Ansatz mithilfe des phase-difference holographic extended Kalman filter, welcher ausschlieslich Phasendifferenzen auswertet und somit in vielen unterschiedlichen Anwendungen einsetzbar ist, und mithilfe des quasi-coherent holographic extended Kalman filter ausgefuhrt, welcher zusatzlich Absolutphasen unter der Annahme stabiler Frequenzreferenzen miteinbezieht und hierdurch extrem exaktes Tracking von Richtungswechseln ermoglicht. Um sehr exakte Lokalisierung durch raumlich verteilte Phasenmessungen zu ermoglichen, sind Antennenarrays notwendig, welche Phasenmessungen auf entsprechend hohem Genauigkeitslevel zur Verfugung stellen. Die Messungen von Antennenarrays werden jedoch durch Phasenmismatch, Kopplung, und Antennenpositionsfehlern beeintrachtigt. Normalerweise werden diese in reflexionsfreien Kammern kalibriert, um die Auswirkungen von Mehrwegeausbreitung zu minimieren. Leider andern sich die Beeintrachtigungen der Antennenarrays bis die Empfanger in die endgultige Messumgebung eingebaut werden. Daher wird eine in-situ Kalibriermethode prasentiert, welche die Empfanger in der gewunschten Messumgebung kalibriert. Aquivalent zum Lokalisieren werden die Kalibrationsmessungen im Nahfeld der Antennenarrays durchgefuhrt, um den Einfluss von Mehrwegeausbreitung zu reduzieren. Insgesamt ermoglichen die vorgestellten Konzepte Indoor-Lokalisierungsergebnisse mit Genauigkeiten im Millimeter Bereich unter Nutzung eines schmalbandigen 24 GHz Messsystems.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Receivers & amplifiers.
$3
3559205
650
4
$a
Global positioning systems--GPS.
$3
3559357
650
4
$a
Cellular telephones.
$3
607843
650
4
$a
Accuracy.
$3
3559958
650
4
$a
Antennas.
$3
3681648
650
4
$a
Radio frequency identification.
$3
3686382
650
4
$a
Arrays.
$3
3681398
650
4
$a
Algorithms.
$3
536374
650
4
$a
Computer science.
$3
523869
650
4
$a
Electrical engineering.
$3
649834
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0984
690
$a
0544
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany).
$3
3564652
773
0
$t
Dissertations Abstracts International
$g
83-09B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29133841
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476769
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入