語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Deep Learning Based Generative Materials Design.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep Learning Based Generative Materials Design./
作者:
Zhao, Yong.
面頁冊數:
1 online resource (159 pages)
附註:
Source: Dissertations Abstracts International, Volume: 84-01, Section: B.
Contained By:
Dissertations Abstracts International84-01B.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28969047click for full text (PQDT)
ISBN:
9798834067245
Deep Learning Based Generative Materials Design.
Zhao, Yong.
Deep Learning Based Generative Materials Design.
- 1 online resource (159 pages)
Source: Dissertations Abstracts International, Volume: 84-01, Section: B.
Thesis (Ph.D.)--University of South Carolina, 2022.
Includes bibliographical references
Discovery of novel functional materials is playing an increasingly important role in many key industries such as lithium batteries for electric vehicles and cell phones. However experimental tinkering of existing materials or Density Functional Theory (DFT) based screening of known crystal structures, two of the major current materials design approaches, are both severely constrained by the limited scale (around 250,000 in ICSD database) and diversity of existing materials and the lack of a sufficient number of materials with annotated properties. How to generate a large number of physically feasible, stable, and synthesizable crystal materials and build accurate property prediction models for screening are the two major unsolved challenges in modern materials science.This dissertation is focused on addressing these two fundamental tasks in material science using deep learning/machine learning models. Deep learning and machine learning have already made tremendous progress in computer vision and natural language processing, as shown by autonomous driving cars and Google's translators, and have the potential to greatly transform the research of materials science. Compared to conventional tinkering based materials discovery methods, data-driven approaches have been increasingly used in material informatics due to their significantly faster screening speeds for new materials. In this dissertation, we design and develop novel deep learning-based algorithms to learn the hidden intricate chemical rules that assemble atoms into stable crystal structures from known crystals and to generate new crystal structures . We also explore and develop novel representation learning methods upon materials compositions and structures for high performance prediction of materials structural characteristics and elastic properties.In the first topic, we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large-scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, we show that the model can not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by DFT based phonon dispersion calculation. Our technique allows to generate tens of thousands of new materials given sufficient computing resources.In the second topic, we propose a Physics Guided Crystal Generative Model (PGCGM) for new materials generation, which significantly expands the structural scope of CubicGAN by bringing the capability of generating crystals of 20 space groups. This is achieved by capturing and exploiting the pairwise atomic distance constraints among neighbor atoms, symmetric geometric constraints, and a novel data augmentation strategy using the base atom sites of materials. With atom clustering and merging on generated crystal structures, our method increases the generator's validity 8 times when compared to one of the baselines and by 143\\% compared to the previous CubicGAN, along with its superiority in properties distribution and diversity. We further validated our generated candidates by DFT calculations, which successfully optimized/relaxed 1869 materials out of 2000 generated ones, of which 39.6\\% had negative formation energy, indicating their stability. In the third topic, we propose and evaluate machine-learning algorithms for determining the structure type of materials, given only their compositions. We couple random forest (RF) and multiple-layer perceptron (MLP) neural network models with three types of features: Magpie, atom vectors, and one-hot encoding (atom frequency) for the crystal system and space group prediction of materials. Four types of models for predicting crystal systems and space groups are proposed, trained, and evaluated including one-versus-all binary classifiers, multiclass classifiers, polymorphism predictors, and multilabel classifiers. The synthetic minority over-sampling technique (SMOTE) is conducted to mitigate the effects of imbalanced data sets. Our results demonstrate that RF with Magpie features generally outperforms other algorithms for binary and multiclass prediction of crystal systems and space groups, while MLP with atom frequency features is the best method for structural polymorphism prediction. Finally, we propose using electronic charge density (ECD) as a generic unified 3D descriptor for materials property prediction due to its advantage of possessing a close relation with the physical and chemical properties of materials. We develop an ECD-based 3D convolutional neural network (CNN) to predict the elastic properties of materials in which CNNs can learn effective hierarchical features with multiple convolving and pooling operations. Our experiments show that our method can achieve good performance for elasticity prediction over 2170 Fm-3m materials.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798834067245Subjects--Topical Terms:
523869
Computer science.
Subjects--Index Terms:
Deep learningIndex Terms--Genre/Form:
542853
Electronic books.
Deep Learning Based Generative Materials Design.
LDR
:06281nmm a2200385K 4500
001
2354231
005
20230403071154.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798834067245
035
$a
(MiAaPQ)AAI28969047
035
$a
AAI28969047
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Zhao, Yong.
$3
1266433
245
1 0
$a
Deep Learning Based Generative Materials Design.
264
0
$c
2022
300
$a
1 online resource (159 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 84-01, Section: B.
500
$a
Advisor: Hu, Jianjun.
502
$a
Thesis (Ph.D.)--University of South Carolina, 2022.
504
$a
Includes bibliographical references
520
$a
Discovery of novel functional materials is playing an increasingly important role in many key industries such as lithium batteries for electric vehicles and cell phones. However experimental tinkering of existing materials or Density Functional Theory (DFT) based screening of known crystal structures, two of the major current materials design approaches, are both severely constrained by the limited scale (around 250,000 in ICSD database) and diversity of existing materials and the lack of a sufficient number of materials with annotated properties. How to generate a large number of physically feasible, stable, and synthesizable crystal materials and build accurate property prediction models for screening are the two major unsolved challenges in modern materials science.This dissertation is focused on addressing these two fundamental tasks in material science using deep learning/machine learning models. Deep learning and machine learning have already made tremendous progress in computer vision and natural language processing, as shown by autonomous driving cars and Google's translators, and have the potential to greatly transform the research of materials science. Compared to conventional tinkering based materials discovery methods, data-driven approaches have been increasingly used in material informatics due to their significantly faster screening speeds for new materials. In this dissertation, we design and develop novel deep learning-based algorithms to learn the hidden intricate chemical rules that assemble atoms into stable crystal structures from known crystals and to generate new crystal structures . We also explore and develop novel representation learning methods upon materials compositions and structures for high performance prediction of materials structural characteristics and elastic properties.In the first topic, we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large-scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, we show that the model can not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by DFT based phonon dispersion calculation. Our technique allows to generate tens of thousands of new materials given sufficient computing resources.In the second topic, we propose a Physics Guided Crystal Generative Model (PGCGM) for new materials generation, which significantly expands the structural scope of CubicGAN by bringing the capability of generating crystals of 20 space groups. This is achieved by capturing and exploiting the pairwise atomic distance constraints among neighbor atoms, symmetric geometric constraints, and a novel data augmentation strategy using the base atom sites of materials. With atom clustering and merging on generated crystal structures, our method increases the generator's validity 8 times when compared to one of the baselines and by 143\\% compared to the previous CubicGAN, along with its superiority in properties distribution and diversity. We further validated our generated candidates by DFT calculations, which successfully optimized/relaxed 1869 materials out of 2000 generated ones, of which 39.6\\% had negative formation energy, indicating their stability. In the third topic, we propose and evaluate machine-learning algorithms for determining the structure type of materials, given only their compositions. We couple random forest (RF) and multiple-layer perceptron (MLP) neural network models with three types of features: Magpie, atom vectors, and one-hot encoding (atom frequency) for the crystal system and space group prediction of materials. Four types of models for predicting crystal systems and space groups are proposed, trained, and evaluated including one-versus-all binary classifiers, multiclass classifiers, polymorphism predictors, and multilabel classifiers. The synthetic minority over-sampling technique (SMOTE) is conducted to mitigate the effects of imbalanced data sets. Our results demonstrate that RF with Magpie features generally outperforms other algorithms for binary and multiclass prediction of crystal systems and space groups, while MLP with atom frequency features is the best method for structural polymorphism prediction. Finally, we propose using electronic charge density (ECD) as a generic unified 3D descriptor for materials property prediction due to its advantage of possessing a close relation with the physical and chemical properties of materials. We develop an ECD-based 3D convolutional neural network (CNN) to predict the elastic properties of materials in which CNNs can learn effective hierarchical features with multiple convolving and pooling operations. Our experiments show that our method can achieve good performance for elasticity prediction over 2170 Fm-3m materials.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
523869
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Materials science.
$3
543314
653
$a
Deep learning
653
$a
Inverse design
653
$a
Machine learning
653
$a
Material informatics
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0984
690
$a
0800
690
$a
0794
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of South Carolina.
$b
Computer Science & Engineering.
$3
1024028
773
0
$t
Dissertations Abstracts International
$g
84-01B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28969047
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476587
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入