語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Dislocation Dynamics in Chemically and Microstructurally Complex Metallic Materials.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Dislocation Dynamics in Chemically and Microstructurally Complex Metallic Materials./
作者:
Jian, Wu-Rong.
面頁冊數:
1 online resource (225 pages)
附註:
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
Contained By:
Dissertations Abstracts International83-11B.
標題:
Mechanical engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28969172click for full text (PQDT)
ISBN:
9798426851979
Dislocation Dynamics in Chemically and Microstructurally Complex Metallic Materials.
Jian, Wu-Rong.
Dislocation Dynamics in Chemically and Microstructurally Complex Metallic Materials.
- 1 online resource (225 pages)
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
Thesis (Ph.D.)--University of California, Santa Barbara, 2022.
Includes bibliographical references
Dislocations are the main carriers of the plasticity and are the dominate deformation mechanism in metallic materials. With recent innovations in manufacturing, a number of novel metallic materials with high strength have been produced. Compared to the conventional metals, these metallic materials are more chemically and microstructurally complex. To best tailor these features for optimal performance, it is necessary to understand how these complex factors affect dislocation dynamics, such as nucleation and propagation. Using atomistic simulations, this thesis research aims to reveal the dislocation dynamics responsible for their superior strength in three types of metallic materials, i.e., multi-principal element alloys (MPEAs) with local chemical fluctuations, metallic nanolaminates with interfaces, and irradiated metals with helium (He) nanobubbles.First, in CoCrNi MPEA, local chemical fluctuations, i.e., lattice distortion (LD) and chemical short-range order (CSRO), play an important role in the nucleation and evolution of dislocations. Under uniaxial tensile loading, LD not only lowers the Young's modulus and strain for nucleation of Shockley partial (SP) dislocations, but also promotes the nucleation of SP dislocations and reduces their mobility, providing enough space and time for the nucleation of nanotwinning. By contrast, CSRO enhances the Young's modulus and critical strain to nucleate SP dislocations. Similarly, dislocations are also resisted by CSRO clusters, resulting in CSRO strengthening.Second, in metallic nanolaminates consisting of alternating metallic layers, confined layer slip (CLS) has been proposed as the main dislocation mode. CLS involves a moving dislocation confined between the parallel interfaces. It has also been postulated that this dislocation dynamics process is affected by interface structure and layer thickness. Via atomistic simulation, it is shown that compared to coherent interfaces, the CLS of dislocations between incoherent interfaces is much more difficult. Notably the key obstruction originates from the misfit dislocations within the incoherent interfaces and it is shown that the dislocation may invoke climb to continue the CLS process. It is also found that in Nb/Nb nanolaminates with coherent interfaces, the CLS stress scales inversely with the layer thickness, as proposed by analytical models. A modified CLS model is proposed that agrees with simulation and treats the influence of the interface as an additional, layer-size-independent resistance.Last but not least, in irradiated Cu with He nanobubbles, it is well known that these nanobubbles significantly influence both material strength and ductility. In studying the interaction between the gliding dislocation and nanobubble, it is found that instead of the conventional dislocation bypass over a He bubble, i.e., bubble cutting or dislocation climb, a new multi-step-bypass (MSB) maneuver occurs. It is demonstrated that this MSB mechanism operates even at room temperature when the He atom density in the bubble is sufficiently large and the ratio of the bubble spacing to its diameter is sufficiently low. For MSB, the entire dislocation changes its glide plane to overcome the bubble, which is promoted by higher temperatures and larger He atom density in the bubble. Compared to the conventional bypass modes, MSB is more energetically favorable.The dislocation dynamics mechanisms discovered in this research can help to deepen understanding of microstructure/performance relationships and guide the microstructure design of these high performance structural materials.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798426851979Subjects--Topical Terms:
649730
Mechanical engineering.
Subjects--Index Terms:
Helium nanobubblesIndex Terms--Genre/Form:
542853
Electronic books.
Dislocation Dynamics in Chemically and Microstructurally Complex Metallic Materials.
LDR
:04977nmm a2200373K 4500
001
2354121
005
20230324111203.5
006
m o d
007
cr mn ---uuuuu
008
241011s2022 xx obm 000 0 eng d
020
$a
9798426851979
035
$a
(MiAaPQ)AAI28969172
035
$a
AAI28969172
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Jian, Wu-Rong.
$3
3694464
245
1 0
$a
Dislocation Dynamics in Chemically and Microstructurally Complex Metallic Materials.
264
0
$c
2022
300
$a
1 online resource (225 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
500
$a
Advisor: Beyerlein, Irene.
502
$a
Thesis (Ph.D.)--University of California, Santa Barbara, 2022.
504
$a
Includes bibliographical references
520
$a
Dislocations are the main carriers of the plasticity and are the dominate deformation mechanism in metallic materials. With recent innovations in manufacturing, a number of novel metallic materials with high strength have been produced. Compared to the conventional metals, these metallic materials are more chemically and microstructurally complex. To best tailor these features for optimal performance, it is necessary to understand how these complex factors affect dislocation dynamics, such as nucleation and propagation. Using atomistic simulations, this thesis research aims to reveal the dislocation dynamics responsible for their superior strength in three types of metallic materials, i.e., multi-principal element alloys (MPEAs) with local chemical fluctuations, metallic nanolaminates with interfaces, and irradiated metals with helium (He) nanobubbles.First, in CoCrNi MPEA, local chemical fluctuations, i.e., lattice distortion (LD) and chemical short-range order (CSRO), play an important role in the nucleation and evolution of dislocations. Under uniaxial tensile loading, LD not only lowers the Young's modulus and strain for nucleation of Shockley partial (SP) dislocations, but also promotes the nucleation of SP dislocations and reduces their mobility, providing enough space and time for the nucleation of nanotwinning. By contrast, CSRO enhances the Young's modulus and critical strain to nucleate SP dislocations. Similarly, dislocations are also resisted by CSRO clusters, resulting in CSRO strengthening.Second, in metallic nanolaminates consisting of alternating metallic layers, confined layer slip (CLS) has been proposed as the main dislocation mode. CLS involves a moving dislocation confined between the parallel interfaces. It has also been postulated that this dislocation dynamics process is affected by interface structure and layer thickness. Via atomistic simulation, it is shown that compared to coherent interfaces, the CLS of dislocations between incoherent interfaces is much more difficult. Notably the key obstruction originates from the misfit dislocations within the incoherent interfaces and it is shown that the dislocation may invoke climb to continue the CLS process. It is also found that in Nb/Nb nanolaminates with coherent interfaces, the CLS stress scales inversely with the layer thickness, as proposed by analytical models. A modified CLS model is proposed that agrees with simulation and treats the influence of the interface as an additional, layer-size-independent resistance.Last but not least, in irradiated Cu with He nanobubbles, it is well known that these nanobubbles significantly influence both material strength and ductility. In studying the interaction between the gliding dislocation and nanobubble, it is found that instead of the conventional dislocation bypass over a He bubble, i.e., bubble cutting or dislocation climb, a new multi-step-bypass (MSB) maneuver occurs. It is demonstrated that this MSB mechanism operates even at room temperature when the He atom density in the bubble is sufficiently large and the ratio of the bubble spacing to its diameter is sufficiently low. For MSB, the entire dislocation changes its glide plane to overcome the bubble, which is promoted by higher temperatures and larger He atom density in the bubble. Compared to the conventional bypass modes, MSB is more energetically favorable.The dislocation dynamics mechanisms discovered in this research can help to deepen understanding of microstructure/performance relationships and guide the microstructure design of these high performance structural materials.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
649730
650
4
$a
Mechanics.
$3
525881
650
4
$a
Materials science.
$3
543314
653
$a
Helium nanobubbles
653
$a
Multi-principal element alloys
653
$a
Metallic nanolaminates
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0548
690
$a
0794
690
$a
0346
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
University of California, Santa Barbara.
$b
Mechanical Engineering.
$3
1018391
773
0
$t
Dissertations Abstracts International
$g
83-11B.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28969172
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476477
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入