語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Control and Obstacle Avoidance for Agile Fixed-Wing Aircraft.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Control and Obstacle Avoidance for Agile Fixed-Wing Aircraft./
作者:
Bulka, Eitan.
面頁冊數:
1 online resource (202 pages)
附註:
Source: Dissertations Abstracts International, Volume: 83-05, Section: A.
Contained By:
Dissertations Abstracts International83-05A.
標題:
Aircraft. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28731117click for full text (PQDT)
ISBN:
9798544223702
Control and Obstacle Avoidance for Agile Fixed-Wing Aircraft.
Bulka, Eitan.
Control and Obstacle Avoidance for Agile Fixed-Wing Aircraft.
- 1 online resource (202 pages)
Source: Dissertations Abstracts International, Volume: 83-05, Section: A.
Thesis (Ph.D.)--McGill University (Canada), 2021.
Includes bibliographical references
Unmanned aerial vehicles (UAVs) have been increasingly proposed for aerial surveillance, mapping, and delivery tasks. Historically these vehicles fall into two categories: conventional fixed-wing aircraft, which are capable of efficient flight over long distances but lack maneuverability, and rotorcraft, which are capable of agile and maneuverable flight but lack efficiency and endurance. Recent advancements in aerial vehicle design aim to incorporate characteristics from both rotorcraft and conventional fixed-wing aircraft, ultimately creating aircraft that are capable of both maneuverable and efficient long distance flight. These type of platforms are ideal for tasks that require both the ability to maneuver through cluttered environments, and the ability to fly long distances efficiently. An aircraft of this type, the agile fixed-wing aircraft, is a fixed-wing aircraft characterized by a high thrust-to-weight ratio (> 1), and large control surfaces capable of large deflections.The objective of this thesis is to further the autonomous capabilities of agile fixed-wing aircraft; specifically in the context of control systems and real-time collision avoidance. The thesis begins with a discussion of a previously developed flight dynamics model, and presents a method for validating a flight dynamics model in flight regimes that rely on feedback control. Subsequently, a single control architecture is developed that can track trajectories within both conventional and aerobatic flight regimes. This architecture is then extended to be applicable to many other types of vehicles, specifically vehicles which can generate a torque in an arbitrary direction, and can apply a single body-fixed force. We demonstrate autonomous aerobatic trajectories with an agile fixed-wing aircraft, specifically knife-edge, rolling harrier, aggressive turnaround and hovering maneuvers within conventional simulations, hardware-in-the-loop simulations, indoor flight tests and outdoor flight tests. We also validate the extension to other platforms by demonstrating flips with a quadrotor in both simulation and outdoor flight tests. All flights were performed with on-board sensing and computation.We then present a reactive obstacle avoidance algorithm that utilizes the maneuvering capabilities of agile fixed-wing aircraft and can be run in real-time with on-board sensing and computation. At each time step, trajectories are selected in real-time from a pre-computed library that lead to various positions on the edge of the obstacle sensor's field-of-view. A cost is assigned to each collision-free trajectory based on its heading toward the goal and minimum distance to obstacles, and the lowest cost trajectory is tracked. If all of the potential trajectories leading to the various positions at the edge of the obstacle sensor's field-of-view result in a collision, the aircraft has enough space to hover and come to a stop, which theoretically guarantees collision-free flight in unknown static environments. Autonomous flight in unknown and unstructured environments using only on-board sensing (stereo camera, IMU, and GPS) and computation is demonstrated with an agile fixed-wing aircraft in both simulation and outdoor flight tests. During the flight testing campaign, the aircraft autonomously flew 4.4 km in a tree-filled environment with an average speed of 8.1 m/s and a top speed of 14.4 m/s.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2023
Mode of access: World Wide Web
ISBN: 9798544223702Subjects--Topical Terms:
832698
Aircraft.
Index Terms--Genre/Form:
542853
Electronic books.
Control and Obstacle Avoidance for Agile Fixed-Wing Aircraft.
LDR
:08486nmm a2200373K 4500
001
2354056
005
20230324111146.5
006
m o d
007
cr mn ---uuuuu
008
241011s2021 xx obm 000 0 eng d
020
$a
9798544223702
035
$a
(MiAaPQ)AAI28731117
035
$a
(MiAaPQ)McGill_xk81jr44f
035
$a
AAI28731117
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Bulka, Eitan.
$3
3694398
245
1 0
$a
Control and Obstacle Avoidance for Agile Fixed-Wing Aircraft.
264
0
$c
2021
300
$a
1 online resource (202 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertations Abstracts International, Volume: 83-05, Section: A.
500
$a
Advisor: Nahon, Meyer.
502
$a
Thesis (Ph.D.)--McGill University (Canada), 2021.
504
$a
Includes bibliographical references
520
$a
Unmanned aerial vehicles (UAVs) have been increasingly proposed for aerial surveillance, mapping, and delivery tasks. Historically these vehicles fall into two categories: conventional fixed-wing aircraft, which are capable of efficient flight over long distances but lack maneuverability, and rotorcraft, which are capable of agile and maneuverable flight but lack efficiency and endurance. Recent advancements in aerial vehicle design aim to incorporate characteristics from both rotorcraft and conventional fixed-wing aircraft, ultimately creating aircraft that are capable of both maneuverable and efficient long distance flight. These type of platforms are ideal for tasks that require both the ability to maneuver through cluttered environments, and the ability to fly long distances efficiently. An aircraft of this type, the agile fixed-wing aircraft, is a fixed-wing aircraft characterized by a high thrust-to-weight ratio (> 1), and large control surfaces capable of large deflections.The objective of this thesis is to further the autonomous capabilities of agile fixed-wing aircraft; specifically in the context of control systems and real-time collision avoidance. The thesis begins with a discussion of a previously developed flight dynamics model, and presents a method for validating a flight dynamics model in flight regimes that rely on feedback control. Subsequently, a single control architecture is developed that can track trajectories within both conventional and aerobatic flight regimes. This architecture is then extended to be applicable to many other types of vehicles, specifically vehicles which can generate a torque in an arbitrary direction, and can apply a single body-fixed force. We demonstrate autonomous aerobatic trajectories with an agile fixed-wing aircraft, specifically knife-edge, rolling harrier, aggressive turnaround and hovering maneuvers within conventional simulations, hardware-in-the-loop simulations, indoor flight tests and outdoor flight tests. We also validate the extension to other platforms by demonstrating flips with a quadrotor in both simulation and outdoor flight tests. All flights were performed with on-board sensing and computation.We then present a reactive obstacle avoidance algorithm that utilizes the maneuvering capabilities of agile fixed-wing aircraft and can be run in real-time with on-board sensing and computation. At each time step, trajectories are selected in real-time from a pre-computed library that lead to various positions on the edge of the obstacle sensor's field-of-view. A cost is assigned to each collision-free trajectory based on its heading toward the goal and minimum distance to obstacles, and the lowest cost trajectory is tracked. If all of the potential trajectories leading to the various positions at the edge of the obstacle sensor's field-of-view result in a collision, the aircraft has enough space to hover and come to a stop, which theoretically guarantees collision-free flight in unknown static environments. Autonomous flight in unknown and unstructured environments using only on-board sensing (stereo camera, IMU, and GPS) and computation is demonstrated with an agile fixed-wing aircraft in both simulation and outdoor flight tests. During the flight testing campaign, the aircraft autonomously flew 4.4 km in a tree-filled environment with an average speed of 8.1 m/s and a top speed of 14.4 m/s.
520
$a
Les vehicules aeriens sans pilote (UAV) sont de plus en plus proposes pour les taches de surveillance aerienne, de cartographie et de livraison. Historiquement, ces vehicules se divisent en deux categories: les aeronefs a voilure fixe conventionnels, qui sont capables de voler efficacement sur de longues distances mais manquent de maniabilite, et les giravions, qui sont capables de voler agilement et manoeuvrablement mais manquent de l'efficacite et de l'endurance. Les progres recents dans la conception des vehicules aeriens visent a integrer les caracteristiques des giravions et des aeronefs a voilure fixe conventionnels, creant enfin des avions capables de voler a la fois manoeuvrablement et efficacement sur de longues distances. Ces types de plates-formes sont ideales pour les taches qui necessitent la capacite de manoeuvrer dans des environnements encombres ainsi que la capacite de voler efficacement sur de longues distances. Un aeronef de ce type, l'aeronef agile a voilure fixe, est un aeronef a voilure fixe caracterise par un rapport poussee/poids eleve (> 1), et de grandes gouvernes capables de grandes deflections. L'objectif de cette these est d'approfondir les capacites autonomes des aeronefs agiles a voilure fixe; specifiquement dans le contexte des systemes de controle et de l'evitement des collisions en temps reel. La these commence par une discussion d'un modele de dynamique de vol precedemment developpe et presente une methode pour valider un modele de dynamique de vol dans des regimes de vol qui reposent sur un controle de retroaction. Par la suite, une architecture de controle unique est developpee qui peut suivre les trajectoires dans les regimes de vol conventionnels et acrobatiques. Cette architecture est ensuite etendue pour etre applicable a de nombreux autres types de vehicules, en particulier des vehicules qui peuvent generer un torque dans une direction arbitraire, et qui peuvent appliquer une force dans une seule direction. Nous demontrons des trajectoires acrobatiques autonomes avec un aeronef a voilure fixe agile dans le cadre des simulations conventionnelles, des simulations hardware-in-the-loop, des tests de vol a l'interieur et des tests de vol a l'exterieur. Nous validons egalement l'extension a d'autres plates-formes en demontrant des flips avec un quadrirotor en simulation et en vol en plein air. Tous les vols ont ete effectues avec la detection et le calcul a bord.Nous presentons ensuite un algorithme d'evitement d'obstacles reactif qui utilise les capacites de manoeuvre des aeronefs a voilure fixe agiles et qui peut etre execute en temps reel avec la detection et le calcul a bord. A chaque iteration, des trajectoires sont selectionnees en temps reel a partir d'une bibliotheque pre-calculee qui menent a differentes positions sur le bord du champ de vision du capteur d'obstacles. Un cout est attribue a chaque trajectoire sans collision en fonction de son cap vers l'objectif et de la distance minimale aux obstacles, et la trajectoire la moins couteuse est suivie. Si toutes les trajectoires potentielles menant aux differentes positions au bord du champ de vision du capteur d'obstacles entraînent une collision, l'avion dispose suffisamment d'espace pour planer et s'arreter, ce qui garantit theoriquement un vol sans collision dans des environnements statiques inconnus. Le vol autonome dans des environnements inconnus et non structures en utilisant uniquement le calcul et la detection embarquee (camera stereo, IMU et GPS) est demontre avec un aeronef agile a voilure fixe dans les tests dev simulation et de vol en exterieur. Au cours des essais de vol, l'avion a vole de maniere autonome pendant 4,4 km dans un environnement arbore avec une vitesse moyenne de 8,1 m/s et une vitesse maximale de 14,4 m/s.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2023
538
$a
Mode of access: World Wide Web
650
4
$a
Aircraft.
$3
832698
650
4
$a
Global positioning systems--GPS.
$3
3559357
650
4
$a
Unmanned aerial vehicles.
$3
3560267
650
4
$a
Sensors.
$3
3549539
650
4
$a
Robotics.
$3
519753
650
4
$a
Vehicles.
$3
2145288
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Engineering.
$3
586835
650
4
$a
Transportation.
$3
555912
655
7
$a
Electronic books.
$2
lcsh
$3
542853
690
$a
0771
690
$a
0538
690
$a
0537
690
$a
0709
710
2
$a
ProQuest Information and Learning Co.
$3
783688
710
2
$a
McGill University (Canada).
$3
1018122
773
0
$t
Dissertations Abstracts International
$g
83-05A.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28731117
$z
click for full text (PQDT)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9476412
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入