語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Statistical Models for Mendelian Randomization Analysis Using Summary-level Data.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical Models for Mendelian Randomization Analysis Using Summary-level Data./
作者:
Uche-Ikonne, Okezie.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2022,
面頁冊數:
158 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
Contained By:
Dissertations Abstracts International83-11B.
標題:
Cancer. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29102556
ISBN:
9798426889354
Statistical Models for Mendelian Randomization Analysis Using Summary-level Data.
Uche-Ikonne, Okezie.
Statistical Models for Mendelian Randomization Analysis Using Summary-level Data.
- Ann Arbor : ProQuest Dissertations & Theses, 2022 - 158 p.
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
Thesis (Ph.D.)--Lancaster University (United Kingdom), 2022.
This item must not be sold to any third party vendors.
Mendelian randomization (MR) is a method that uses genetic variants as instrument variables to investigate causality in epidemiology. The application of MR has increased over the years due to genotype-exposure and genotype-disease estimates being published in large genome-wide association studies (GWAS). This research investigates statistical models using GWAS estimates.To increase the application of Bayesian models in MR, an R package mrbayes, which implements univariate and multivariate Bayesian estimation for commonly used two-sample MR estimators, specifically; the inverse variance weighted (IVW), MR-Egger, and radial MR-Egger models. The thesis investigated the use of multivariate Bayesian models with hierarchical priors (BayesLasso, Horseshoe, and Horseshoe+) that account for high-throughput data. Simulations showed these models produced consistent estimates in the presence of pleiotropy and invalid instruments. This thesis also investigated weighted and conditional quantile estimators. Quantile models were shown to produce less bias estimates in simulations.This thesis has described and reviewed the MR approach and then developed and assessed Bayesian methods for genotype summary level data for application in MR analyses. This research shows how prior distributions can be used to make MR models more robust to the standard IV assumptions.
ISBN: 9798426889354Subjects--Topical Terms:
634186
Cancer.
Statistical Models for Mendelian Randomization Analysis Using Summary-level Data.
LDR
:02442nmm a2200337 4500
001
2351581
005
20221107090131.5
008
241004s2022 ||||||||||||||||| ||eng d
020
$a
9798426889354
035
$a
(MiAaPQ)AAI29102556
035
$a
(MiAaPQ)Lancaster_166667
035
$a
AAI29102556
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Uche-Ikonne, Okezie.
$3
3691155
245
1 0
$a
Statistical Models for Mendelian Randomization Analysis Using Summary-level Data.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
158 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-11, Section: B.
500
$a
Advisor: Palmer, Tom.
502
$a
Thesis (Ph.D.)--Lancaster University (United Kingdom), 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
Mendelian randomization (MR) is a method that uses genetic variants as instrument variables to investigate causality in epidemiology. The application of MR has increased over the years due to genotype-exposure and genotype-disease estimates being published in large genome-wide association studies (GWAS). This research investigates statistical models using GWAS estimates.To increase the application of Bayesian models in MR, an R package mrbayes, which implements univariate and multivariate Bayesian estimation for commonly used two-sample MR estimators, specifically; the inverse variance weighted (IVW), MR-Egger, and radial MR-Egger models. The thesis investigated the use of multivariate Bayesian models with hierarchical priors (BayesLasso, Horseshoe, and Horseshoe+) that account for high-throughput data. Simulations showed these models produced consistent estimates in the presence of pleiotropy and invalid instruments. This thesis also investigated weighted and conditional quantile estimators. Quantile models were shown to produce less bias estimates in simulations.This thesis has described and reviewed the MR approach and then developed and assessed Bayesian methods for genotype summary level data for application in MR analyses. This research shows how prior distributions can be used to make MR models more robust to the standard IV assumptions.
590
$a
School code: 0416.
650
4
$a
Cancer.
$3
634186
650
4
$a
Software.
$2
gtt.
$3
619355
650
4
$a
Motivation.
$3
532704
650
4
$a
Epidemiology.
$3
568544
650
4
$a
Mediators.
$3
3562101
650
4
$a
High density lipoprotein.
$3
3691156
650
4
$a
Cholesterol.
$3
3382101
650
4
$a
Cardiovascular disease.
$3
3564561
650
4
$a
Alternative dispute resolution.
$3
3168470
650
4
$a
Computer science.
$3
523869
650
4
$a
Medicine.
$3
641104
690
$a
0766
690
$a
0649
690
$a
0984
690
$a
0564
710
2
$a
Lancaster University (United Kingdom).
$3
1294170
773
0
$t
Dissertations Abstracts International
$g
83-11B.
790
$a
0416
791
$a
Ph.D.
792
$a
2022
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=29102556
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9474019
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入