語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Learning Perception and Control from Rich Interactions.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learning Perception and Control from Rich Interactions./
作者:
Fang, Kuan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
147 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Contained By:
Dissertations Abstracts International83-05B.
標題:
Deep learning. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28812864
ISBN:
9798494455710
Learning Perception and Control from Rich Interactions.
Fang, Kuan.
Learning Perception and Control from Rich Interactions.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 147 p.
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Thesis (Ph.D.)--Stanford University, 2021.
This item must not be sold to any third party vendors.
Building robotic systems that can perform a wide range of tasks in the real world would require generalizable perception and control. Despite recent advances in deep learning, existing paradigms often rely on extensive human engineering and suffer from limited generalization capability. To handle the desired diversity and complexity in challenging tasks, we would need to further scale up learning by rethinking the methodology for collecting and utilizing data for robots. In this dissertation, we discuss methods that enable robots to enhance perception and control by learning from rich interactions with the environment. We develop structured models and learning algorithms for robots to effectively acquire sensorimotor skills and solve sequential tasks. To scale up learning, we design mechanisms to provide data from various sources. We further propose frameworks that adaptively generate tasks from parameterized task spaces to facilitate curriculum learning and skill discovery.
ISBN: 9798494455710Subjects--Topical Terms:
3554982
Deep learning.
Learning Perception and Control from Rich Interactions.
LDR
:02097nmm a2200349 4500
001
2350668
005
20221020130412.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798494455710
035
$a
(MiAaPQ)AAI28812864
035
$a
(MiAaPQ)STANFORDgn280rg9424
035
$a
AAI28812864
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Fang, Kuan.
$3
3690174
245
1 0
$a
Learning Perception and Control from Rich Interactions.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
147 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
500
$a
Advisor: Li, Fei-Fei;Savarese, Silvio;Guibas, Leonidas J. ;Sadigh, Dorsa.
502
$a
Thesis (Ph.D.)--Stanford University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Building robotic systems that can perform a wide range of tasks in the real world would require generalizable perception and control. Despite recent advances in deep learning, existing paradigms often rely on extensive human engineering and suffer from limited generalization capability. To handle the desired diversity and complexity in challenging tasks, we would need to further scale up learning by rethinking the methodology for collecting and utilizing data for robots. In this dissertation, we discuss methods that enable robots to enhance perception and control by learning from rich interactions with the environment. We develop structured models and learning algorithms for robots to effectively acquire sensorimotor skills and solve sequential tasks. To scale up learning, we design mechanisms to provide data from various sources. We further propose frameworks that adaptively generate tasks from parameterized task spaces to facilitate curriculum learning and skill discovery.
590
$a
School code: 0212.
650
4
$a
Deep learning.
$3
3554982
650
4
$a
Failure analysis.
$3
3563948
650
4
$a
Curricula.
$3
3422445
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Planning.
$3
552734
650
4
$a
Neural networks.
$3
677449
650
4
$a
Robots.
$3
529507
650
4
$a
Adaptation.
$3
3562958
650
4
$a
Design.
$3
518875
650
4
$a
Algorithms.
$3
536374
650
4
$a
Ablation.
$3
3562462
650
4
$a
Physical properties.
$3
3564184
650
4
$a
Semantics.
$3
520060
650
4
$a
Robotics.
$3
519753
650
4
$a
Skills.
$3
3221615
650
4
$a
Computer science.
$3
523869
650
4
$a
Linguistics.
$3
524476
690
$a
0771
690
$a
0389
690
$a
0800
690
$a
0984
690
$a
0290
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
83-05B.
790
$a
0212
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28812864
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9473106
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入