語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
A Big Data Approach to Accounting Fraud Detection Using Data Envelopment Analysis and One Class Support Vector Machine.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A Big Data Approach to Accounting Fraud Detection Using Data Envelopment Analysis and One Class Support Vector Machine./
作者:
Wilfred, Kattren.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
73 p.
附註:
Source: Masters Abstracts International, Volume: 83-01.
Contained By:
Masters Abstracts International83-01.
標題:
Operations research. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28317760
ISBN:
9798522943912
A Big Data Approach to Accounting Fraud Detection Using Data Envelopment Analysis and One Class Support Vector Machine.
Wilfred, Kattren.
A Big Data Approach to Accounting Fraud Detection Using Data Envelopment Analysis and One Class Support Vector Machine.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 73 p.
Source: Masters Abstracts International, Volume: 83-01.
Thesis (M.A.S.)--University of Toronto (Canada), 2021.
This item must not be sold to any third party vendors.
This thesis investigates a method to use Data Envelopment Analysis (DEA) in the context of big data to improve data analysis for the volume and velocity aspects of big data. First, DEA is used to identify fraud indicators in a large dataset. One class support vector machine (OC-SVM) is then used to identify outliers in the same dataset to evaluate the performance of the proposed DEA model. A second DEA model is proposed as a variable selection tool to enhance the performance of an OC-SVM model. The results show that although the proposed DEA model on its own is not as effective in detecting anomalies as OC-SVM, there is potential to use DEA as a variable selection tool to enhance the training and prediction process for anomaly detection using OC-SVM. The parameters and methods examined in this thesis are not exhaustive, but it does provide a baseline for future work.
ISBN: 9798522943912Subjects--Topical Terms:
547123
Operations research.
Subjects--Index Terms:
Anomaly Detection
A Big Data Approach to Accounting Fraud Detection Using Data Envelopment Analysis and One Class Support Vector Machine.
LDR
:02030nmm a2200349 4500
001
2350622
005
20221020130359.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798522943912
035
$a
(MiAaPQ)AAI28317760
035
$a
AAI28317760
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Wilfred, Kattren.
$3
3690123
245
1 0
$a
A Big Data Approach to Accounting Fraud Detection Using Data Envelopment Analysis and One Class Support Vector Machine.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
73 p.
500
$a
Source: Masters Abstracts International, Volume: 83-01.
500
$a
Advisor: Paradi, Joseph C.
502
$a
Thesis (M.A.S.)--University of Toronto (Canada), 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
This thesis investigates a method to use Data Envelopment Analysis (DEA) in the context of big data to improve data analysis for the volume and velocity aspects of big data. First, DEA is used to identify fraud indicators in a large dataset. One class support vector machine (OC-SVM) is then used to identify outliers in the same dataset to evaluate the performance of the proposed DEA model. A second DEA model is proposed as a variable selection tool to enhance the performance of an OC-SVM model. The results show that although the proposed DEA model on its own is not as effective in detecting anomalies as OC-SVM, there is potential to use DEA as a variable selection tool to enhance the training and prediction process for anomaly detection using OC-SVM. The parameters and methods examined in this thesis are not exhaustive, but it does provide a baseline for future work.
590
$a
School code: 0779.
650
4
$a
Operations research.
$3
547123
650
4
$a
Industrial engineering.
$3
526216
650
4
$a
Information science.
$3
554358
650
4
$a
Accuracy.
$3
3559958
650
4
$a
Datasets.
$3
3541416
650
4
$a
Mathematical models.
$3
522882
650
4
$a
Optimization techniques.
$3
3681622
650
4
$a
Data analysis.
$2
bisacsh
$3
3515250
650
4
$a
Data envelopment analysis.
$3
630049
650
4
$a
Performance evaluation.
$3
3562292
650
4
$a
Efficiency.
$3
753744
650
4
$a
Velocity.
$3
3560495
650
4
$a
Purchase orders.
$3
3690124
650
4
$a
Classification.
$3
595585
650
4
$a
Support vector machines.
$3
2058743
650
4
$a
Variables.
$3
3548259
650
4
$a
Linear programming.
$3
560448
650
4
$a
Methods.
$3
3560391
650
4
$a
Correlation analysis.
$3
3684579
650
4
$a
Algorithms.
$3
536374
650
4
$a
Fraud.
$3
721834
653
$a
Anomaly Detection
653
$a
Data Envelopment Analysis
653
$a
One Class Support Vector Machine
690
$a
0796
690
$a
0546
690
$a
0723
710
2
$a
University of Toronto (Canada).
$b
Mechanical and Industrial Engineering.
$3
2100959
773
0
$t
Masters Abstracts International
$g
83-01.
790
$a
0779
791
$a
M.A.S.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28317760
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9473060
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入