語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
The Ginzburg -Landau theory for a thin superconducting loop in a large magnetic field.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Ginzburg -Landau theory for a thin superconducting loop in a large magnetic field./
作者:
Shieh, Tien-Tsan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2007,
面頁冊數:
88 p.
附註:
Source: Dissertations Abstracts International, Volume: 69-05, Section: B.
Contained By:
Dissertations Abstracts International69-05B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3274923
ISBN:
9780549157571
The Ginzburg -Landau theory for a thin superconducting loop in a large magnetic field.
Shieh, Tien-Tsan.
The Ginzburg -Landau theory for a thin superconducting loop in a large magnetic field.
- Ann Arbor : ProQuest Dissertations & Theses, 2007 - 88 p.
Source: Dissertations Abstracts International, Volume: 69-05, Section: B.
Thesis (Ph.D.)--Indiana University, 2007.
When a temperature is lower than a certain critical value, a superconducting sample undergoes a phase transition from a normal state to a superconducting state. This onset process of superconductivity can be studied as a Rayleigh quotient under the framework of the Ginzburg-Landau theory. In particular, I study the onset problem for a thin superconducting loop in a large magnetic field. This double limit problem was first carried out by Richardson and Rubinstein by using formal asymptotic expansions. I rigorously show that a one-dimensional Rayleigh quotient in the spirit of Gamma-convergence. The full Gamma-convergence of the Ginzburg-Landau functional for a thin domain and a large field is also obtained. The rigorous analysis in this thesis shows the validity of Richardson and Rubinstein's formal results. It is also shown that the Rayleigh quotient related to this onset problem has a periodic variation with a parabolic background. The parabolic background effect can be explained by a non-ignorable effect if finite-width cross-section of a thin superconducting sample. This illustrate the observation of the Little-Parks experiment.
ISBN: 9780549157571Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Asymptotic expansions
The Ginzburg -Landau theory for a thin superconducting loop in a large magnetic field.
LDR
:02363nmm a2200385 4500
001
2349447
005
20220920134317.5
008
241004s2007 ||||||||||||||||| ||eng d
020
$a
9780549157571
035
$a
(MiAaPQ)AAI3274923
035
$a
(MiAaPQ)indiana:1752
035
$a
AAI3274923
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Shieh, Tien-Tsan.
$3
3688859
245
1 4
$a
The Ginzburg -Landau theory for a thin superconducting loop in a large magnetic field.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2007
300
$a
88 p.
500
$a
Source: Dissertations Abstracts International, Volume: 69-05, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Sternberg, Peter.
502
$a
Thesis (Ph.D.)--Indiana University, 2007.
520
$a
When a temperature is lower than a certain critical value, a superconducting sample undergoes a phase transition from a normal state to a superconducting state. This onset process of superconductivity can be studied as a Rayleigh quotient under the framework of the Ginzburg-Landau theory. In particular, I study the onset problem for a thin superconducting loop in a large magnetic field. This double limit problem was first carried out by Richardson and Rubinstein by using formal asymptotic expansions. I rigorously show that a one-dimensional Rayleigh quotient in the spirit of Gamma-convergence. The full Gamma-convergence of the Ginzburg-Landau functional for a thin domain and a large field is also obtained. The rigorous analysis in this thesis shows the validity of Richardson and Rubinstein's formal results. It is also shown that the Rayleigh quotient related to this onset problem has a periodic variation with a parabolic background. The parabolic background effect can be explained by a non-ignorable effect if finite-width cross-section of a thin superconducting sample. This illustrate the observation of the Little-Parks experiment.
590
$a
School code: 0093.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Condensation.
$3
942542
653
$a
Asymptotic expansions
653
$a
Gamma-convergence
653
$a
Ginzburg-Landau theory
653
$a
Magnetic field
653
$a
Phase transitions
653
$a
Superconducting loop
690
$a
0405
690
$a
0611
710
2
$a
Indiana University.
$b
Mathematics.
$3
1036206
773
0
$t
Dissertations Abstracts International
$g
69-05B.
790
$a
0093
791
$a
Ph.D.
792
$a
2007
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3274923
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9471885
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入