語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Geometric Algorithms for Interpretable Manifold Learning.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Geometric Algorithms for Interpretable Manifold Learning./
作者:
Koelle, Samson.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2022,
面頁冊數:
187 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-10, Section: B.
Contained By:
Dissertations Abstracts International83-10B.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28962819
ISBN:
9798426800793
Geometric Algorithms for Interpretable Manifold Learning.
Koelle, Samson.
Geometric Algorithms for Interpretable Manifold Learning.
- Ann Arbor : ProQuest Dissertations & Theses, 2022 - 187 p.
Source: Dissertations Abstracts International, Volume: 83-10, Section: B.
Thesis (Ph.D.)--University of Washington, 2022.
This item must not be sold to any third party vendors.
This thesis proposes several algorithms in the area of interpretable unsupervised learning. Chapters 3 and 4 introduce a sparse convex regression approach for identifying local diffeomorphisms from a dictionary of interpretable functions. In Chapter 3, this algorithm makes use of an embedding learned by a manifold learning algorithm, while in Chapter 4, this algorithm is applied without the use of a precomputed embedding. Chapter 5 then introduces a set of alternative algorithms that avoid issues stemming from sparse regression, characterizes the tangent space version of this algorithm as identifying isometries when available, and gives a two-stage algorithm combining this approach with the computational advantages of the algorithms in Chapters 3 and 4. Finally, Chapter 6 gives an alternate tangent space estimator based on a learned embedding, and uses this as an initial estimator to tackle the related gradient estimation problem. Together, these approaches provide a toolbox of methods for computing and associating gradient information to learn descriptive parameterizations of data manifolds.
ISBN: 9798426800793Subjects--Topical Terms:
517247
Statistics.
Subjects--Index Terms:
Gradient estimation
Geometric Algorithms for Interpretable Manifold Learning.
LDR
:02289nmm a2200385 4500
001
2346925
005
20220706051325.5
008
241004s2022 ||||||||||||||||| ||eng d
020
$a
9798426800793
035
$a
(MiAaPQ)AAI28962819
035
$a
AAI28962819
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Koelle, Samson.
$3
3686132
245
1 0
$a
Geometric Algorithms for Interpretable Manifold Learning.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
187 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-10, Section: B.
500
$a
Advisor: Meila, Marina.
502
$a
Thesis (Ph.D.)--University of Washington, 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
This thesis proposes several algorithms in the area of interpretable unsupervised learning. Chapters 3 and 4 introduce a sparse convex regression approach for identifying local diffeomorphisms from a dictionary of interpretable functions. In Chapter 3, this algorithm makes use of an embedding learned by a manifold learning algorithm, while in Chapter 4, this algorithm is applied without the use of a precomputed embedding. Chapter 5 then introduces a set of alternative algorithms that avoid issues stemming from sparse regression, characterizes the tangent space version of this algorithm as identifying isometries when available, and gives a two-stage algorithm combining this approach with the computational advantages of the algorithms in Chapters 3 and 4. Finally, Chapter 6 gives an alternate tangent space estimator based on a learned embedding, and uses this as an initial estimator to tackle the related gradient estimation problem. Together, these approaches provide a toolbox of methods for computing and associating gradient information to learn descriptive parameterizations of data manifolds.
590
$a
School code: 0250.
650
4
$a
Statistics.
$3
517247
650
4
$a
Computer science.
$3
523869
650
4
$a
Computational chemistry.
$3
3350019
653
$a
Gradient estimation
653
$a
Group lasso
653
$a
Manifold learning
653
$a
Quantum chemistry
653
$a
Shape space
653
$a
Tangent space estimation
690
$a
0463
690
$a
0984
690
$a
0219
710
2
$a
University of Washington.
$b
Statistics.
$3
2101060
773
0
$t
Dissertations Abstracts International
$g
83-10B.
790
$a
0250
791
$a
Ph.D.
792
$a
2022
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28962819
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9469363
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入