語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Data Integration in Population and Community Ecology Using Hierarchical Modeling.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data Integration in Population and Community Ecology Using Hierarchical Modeling./
作者:
Farr, Matthew T.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
136 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Contained By:
Dissertations Abstracts International83-05B.
標題:
Ecology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28771712
ISBN:
9798471109773
Data Integration in Population and Community Ecology Using Hierarchical Modeling.
Farr, Matthew T.
Data Integration in Population and Community Ecology Using Hierarchical Modeling.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 136 p.
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Thesis (Ph.D.)--Michigan State University, 2021.
This item must not be sold to any third party vendors.
In this dissertation, I develop and apply methods for data integration using hierarchical modeling to estimate the status, trends, and demography of wildlife populations and communities. I use multi-level statistical and mathematical models to explicitly link observed data to latent ecological processes. By separately modeling observational and ecological processes, I can integrate multiple disparate data sources into a unified framework to estimate ecologically relevant population and community parameters, often in the context of wildlife conservation. In Chapter One, I apply a multispecies hierarchical distance sampling model to assess the effect of management actions on a carnivore community in the Masai Mara National Reserve, Kenya. I assess variation in species-level responses to passive management, resulting in human disturbance and apex predator declines. In Chapter Two, I develop an integrated distribution model that uses distance sampling and presence-only data to jointly estimate species abundance. I apply this model to a case study on black-backed jackals (Canis mesomelas) to evaluate the effects of anthropogenic disturbance on the distribution of jackals across the Masai Mara National Reserve. In Chapter Three, I evaluate status and trends of species in a forest dwelling duiker community using detection-nondetection data. I develop a multispecies dynamic N-occupancy model to estimate species-level abundance, demographic parameters, and quasi-extinction probabilities. In Chapter Four, I create a spatiotemporal integrated model to estimate the effects of weather conditions on monarch butterflies (Danaus plexippus) during spring migration. Each chapter illustrates a unique application of data integration in wildlife ecology, either by combining data on multiple species to estimate population and community-level parameters or by combining disparate data sources on a single species to estimate demography and other population-level parameters. Data integration is a powerful framework that leverages all available information to address pressing conservation challenges.
ISBN: 9798471109773Subjects--Topical Terms:
516476
Ecology.
Subjects--Index Terms:
Data integration
Data Integration in Population and Community Ecology Using Hierarchical Modeling.
LDR
:03245nmm a2200361 4500
001
2346494
005
20230315102226.5
006
m o d
007
cr#unu||||||||
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798471109773
035
$a
(MiAaPQ)AAI28771712
035
$a
AAI28771712
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Farr, Matthew T.
$0
(orcid)0000-0003-1011-6851
$3
3685598
245
1 0
$a
Data Integration in Population and Community Ecology Using Hierarchical Modeling.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
136 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
500
$a
Advisor: Zipkin, Elise.
502
$a
Thesis (Ph.D.)--Michigan State University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
In this dissertation, I develop and apply methods for data integration using hierarchical modeling to estimate the status, trends, and demography of wildlife populations and communities. I use multi-level statistical and mathematical models to explicitly link observed data to latent ecological processes. By separately modeling observational and ecological processes, I can integrate multiple disparate data sources into a unified framework to estimate ecologically relevant population and community parameters, often in the context of wildlife conservation. In Chapter One, I apply a multispecies hierarchical distance sampling model to assess the effect of management actions on a carnivore community in the Masai Mara National Reserve, Kenya. I assess variation in species-level responses to passive management, resulting in human disturbance and apex predator declines. In Chapter Two, I develop an integrated distribution model that uses distance sampling and presence-only data to jointly estimate species abundance. I apply this model to a case study on black-backed jackals (Canis mesomelas) to evaluate the effects of anthropogenic disturbance on the distribution of jackals across the Masai Mara National Reserve. In Chapter Three, I evaluate status and trends of species in a forest dwelling duiker community using detection-nondetection data. I develop a multispecies dynamic N-occupancy model to estimate species-level abundance, demographic parameters, and quasi-extinction probabilities. In Chapter Four, I create a spatiotemporal integrated model to estimate the effects of weather conditions on monarch butterflies (Danaus plexippus) during spring migration. Each chapter illustrates a unique application of data integration in wildlife ecology, either by combining data on multiple species to estimate population and community-level parameters or by combining disparate data sources on a single species to estimate demography and other population-level parameters. Data integration is a powerful framework that leverages all available information to address pressing conservation challenges.
590
$a
School code: 0128.
650
4
$a
Ecology.
$3
516476
650
4
$a
Zoology.
$3
518878
653
$a
Data integration
653
$a
Population
653
$a
Community ecology
690
$a
0329
690
$a
0472
710
2
$a
Michigan State University.
$b
Integrative Biology - Doctor of Philosophy.
$3
3346727
773
0
$t
Dissertations Abstracts International
$g
83-05B.
790
$a
0128
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28771712
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9468932
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入