語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Recycling of Fiber Polymer Matrix Composites into Cementitious Materials.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Recycling of Fiber Polymer Matrix Composites into Cementitious Materials./
作者:
Clark, Edward Patton.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
157 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Contained By:
Dissertations Abstracts International83-05B.
標題:
Materials science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28645773
ISBN:
9798471133181
Recycling of Fiber Polymer Matrix Composites into Cementitious Materials.
Clark, Edward Patton.
Recycling of Fiber Polymer Matrix Composites into Cementitious Materials.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 157 p.
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
Thesis (Ph.D.)--University of Denver, 2021.
This item must not be sold to any third party vendors.
Recycling options for fiber polymer matrix composite waste materials are limited because they typically cannot be reused, reprocessed for down-cycling, and are generally environmentally unfriendly. The utility industry, specifically electrical distribution, has been increasingly using hybrid carbon, glass fiber, and epoxy resin composite rods for high-voltage (HV) conductor transmission lines. The high-voltage conductor core (HVCC) used in the transmission line can have an optimal in-service-life of roughly several decades, in which the material is then retired to a waste landfill. Currently, there is limited research and recycling methodology for these hybrid composite rods. In this research, powder carbon fiber, glass fiber, and epoxy admixture filler material were used in cement to improve the durability and reduce aging effects in hardened Portland cement materials. This research also attempts to determine a method of processing the HVCC material for an admixture of recyclable filler material in cementitious construction building materials as an alternative to disposal in landfills. The corrosive aging effects of moisture and saltwater environments on low- and high-pressure compacted hardened neat Portland cement material were found to decrease average compression strengths by approximately 30% and 8% respectively. Salt-aged OPC neat low-pressure maximum average compression strength decreased from 75 MPa to 52 MPa, while OPC with particle fiber powder admixture at 6.0 wt% only decreased from 55 MPa to 52MPa. Recycled HVCC filler in cement at high-pressure compaction was a significant factor reducing degradation of mechanical compression strengths after saltwater aging by approximately 93% in high-pressure compacted Portland cement. Salt-aged high-pressure compacted OPC maximum average compression strength decreased from 59 MPa to 41 MPa, and OPC with particle fiber powder admixture maximum average compression strength decreased from 44 MPa to 41 MPa. The OPC with HVCC crushed rod chips admixture at 6.0 wt% had the poorest maximum average compression strength at low- and high-pressure compacted at 34 MPa and 32 MPa respectively. Therefore, particle fiber powder consisting of carbon/glass fibers and epoxy resin was shown to have substantial qualitative benefits as an admixture filler in cement. Additional numerical approaches were developed for low-pressure and high-pressure molecular diffusion analyses. The numerical models were used to expand the understanding of low-diffusive particle inclusions such as fibers can act as retardants of water transport, which can contribute to carrying charged ions, Cl- through porous cement. Molecular dynamics mean squared displacement simulation of water transport decreased by roughly 85% in high-pressure compacted cement with carbon/glass fiber and epoxy. Concentration transport of chemical species had decreased saturation in by 57% in low-porosity (0.02) cement compared to high-porosity (0.05) with fibers. The research presented in this dissertation was enhanced using molecular dynamics analysis, 2D finite element concentration diffusion analysis, and experimental methods.
ISBN: 9798471133181Subjects--Topical Terms:
543314
Materials science.
Subjects--Index Terms:
Fiber polymer matrix composite
Recycling of Fiber Polymer Matrix Composites into Cementitious Materials.
LDR
:04346nmm a2200373 4500
001
2346452
005
20230315102214.5
006
m o d
007
cr#unu||||||||
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798471133181
035
$a
(MiAaPQ)AAI28645773
035
$a
AAI28645773
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Clark, Edward Patton.
$3
3685546
245
1 0
$a
Recycling of Fiber Polymer Matrix Composites into Cementitious Materials.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
157 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-05, Section: B.
500
$a
Advisor: Gordon, Matt;Majestic, Brian.
502
$a
Thesis (Ph.D.)--University of Denver, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Recycling options for fiber polymer matrix composite waste materials are limited because they typically cannot be reused, reprocessed for down-cycling, and are generally environmentally unfriendly. The utility industry, specifically electrical distribution, has been increasingly using hybrid carbon, glass fiber, and epoxy resin composite rods for high-voltage (HV) conductor transmission lines. The high-voltage conductor core (HVCC) used in the transmission line can have an optimal in-service-life of roughly several decades, in which the material is then retired to a waste landfill. Currently, there is limited research and recycling methodology for these hybrid composite rods. In this research, powder carbon fiber, glass fiber, and epoxy admixture filler material were used in cement to improve the durability and reduce aging effects in hardened Portland cement materials. This research also attempts to determine a method of processing the HVCC material for an admixture of recyclable filler material in cementitious construction building materials as an alternative to disposal in landfills. The corrosive aging effects of moisture and saltwater environments on low- and high-pressure compacted hardened neat Portland cement material were found to decrease average compression strengths by approximately 30% and 8% respectively. Salt-aged OPC neat low-pressure maximum average compression strength decreased from 75 MPa to 52 MPa, while OPC with particle fiber powder admixture at 6.0 wt% only decreased from 55 MPa to 52MPa. Recycled HVCC filler in cement at high-pressure compaction was a significant factor reducing degradation of mechanical compression strengths after saltwater aging by approximately 93% in high-pressure compacted Portland cement. Salt-aged high-pressure compacted OPC maximum average compression strength decreased from 59 MPa to 41 MPa, and OPC with particle fiber powder admixture maximum average compression strength decreased from 44 MPa to 41 MPa. The OPC with HVCC crushed rod chips admixture at 6.0 wt% had the poorest maximum average compression strength at low- and high-pressure compacted at 34 MPa and 32 MPa respectively. Therefore, particle fiber powder consisting of carbon/glass fibers and epoxy resin was shown to have substantial qualitative benefits as an admixture filler in cement. Additional numerical approaches were developed for low-pressure and high-pressure molecular diffusion analyses. The numerical models were used to expand the understanding of low-diffusive particle inclusions such as fibers can act as retardants of water transport, which can contribute to carrying charged ions, Cl- through porous cement. Molecular dynamics mean squared displacement simulation of water transport decreased by roughly 85% in high-pressure compacted cement with carbon/glass fiber and epoxy. Concentration transport of chemical species had decreased saturation in by 57% in low-porosity (0.02) cement compared to high-porosity (0.05) with fibers. The research presented in this dissertation was enhanced using molecular dynamics analysis, 2D finite element concentration diffusion analysis, and experimental methods.
590
$a
School code: 0061.
650
4
$a
Materials science.
$3
543314
650
4
$a
Polymer chemistry.
$3
3173488
650
4
$a
Chemical engineering.
$3
560457
653
$a
Fiber polymer matrix composite
653
$a
Recycling
653
$a
Cementitious materials
690
$a
0794
690
$a
0542
690
$a
0495
710
2
$a
University of Denver.
$b
Mechanical Engineering.
$3
1023714
773
0
$t
Dissertations Abstracts International
$g
83-05B.
790
$a
0061
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28645773
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9468890
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入