語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Methods and Theory for Nonparametric Inference in High-Dimensional Settings.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Methods and Theory for Nonparametric Inference in High-Dimensional Settings./
作者:
Xiang, Yunhua.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
147 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Contained By:
Dissertations Abstracts International83-02B.
標題:
Biostatistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28547011
ISBN:
9798535507071
Methods and Theory for Nonparametric Inference in High-Dimensional Settings.
Xiang, Yunhua.
Methods and Theory for Nonparametric Inference in High-Dimensional Settings.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 147 p.
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Thesis (Ph.D.)--University of Washington, 2021.
This item must not be sold to any third party vendors.
This dissertation addresses nonparametric estimation and inference problems of graphical modeling, linear association assessment, and matrix completion. First, we introduce a flexible framework for nonparametric graphical modeling. We propose three nonparametric measures of conditional dependence, which have theoretically optimal estimators that allow incorporation of flexible machine learning techniques and yield wald-type confidence intervals. In the second project, we propose a nonparametric parameter to measure the linear association between the outcome and explanatory variables. This parameter is always explicitly defined even when the true relationship is nonlinear and is equivalent with the regression coefficient under a linear model space. Thus, its estimator can be a more robust alternative to the standard model-based techniques to estimate the coefficients of a linear model. In the final project, we theoretically show that nuclear-norm penalization used for recovering low-rank matrices, remains effective even when the underlying matrices are generated by a low-dimensional non-linear manifold. The convergence rate can be expressed as a function of the size of the matrix, as well as the smoothness and dimension of the manifold, which is minimax optimal (up to a log term).
ISBN: 9798535507071Subjects--Topical Terms:
1002712
Biostatistics.
Subjects--Index Terms:
Graphical modeling
Methods and Theory for Nonparametric Inference in High-Dimensional Settings.
LDR
:02462nmm a2200373 4500
001
2345977
005
20220613064828.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798535507071
035
$a
(MiAaPQ)AAI28547011
035
$a
AAI28547011
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Xiang, Yunhua.
$3
3684995
245
1 0
$a
Methods and Theory for Nonparametric Inference in High-Dimensional Settings.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
147 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
500
$a
Advisor: Simon, Noah.
502
$a
Thesis (Ph.D.)--University of Washington, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
This dissertation addresses nonparametric estimation and inference problems of graphical modeling, linear association assessment, and matrix completion. First, we introduce a flexible framework for nonparametric graphical modeling. We propose three nonparametric measures of conditional dependence, which have theoretically optimal estimators that allow incorporation of flexible machine learning techniques and yield wald-type confidence intervals. In the second project, we propose a nonparametric parameter to measure the linear association between the outcome and explanatory variables. This parameter is always explicitly defined even when the true relationship is nonlinear and is equivalent with the regression coefficient under a linear model space. Thus, its estimator can be a more robust alternative to the standard model-based techniques to estimate the coefficients of a linear model. In the final project, we theoretically show that nuclear-norm penalization used for recovering low-rank matrices, remains effective even when the underlying matrices are generated by a low-dimensional non-linear manifold. The convergence rate can be expressed as a function of the size of the matrix, as well as the smoothness and dimension of the manifold, which is minimax optimal (up to a log term).
590
$a
School code: 0250.
650
4
$a
Biostatistics.
$3
1002712
650
4
$a
Statistics.
$3
517247
650
4
$a
Biology.
$3
522710
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Students.
$3
756581
650
4
$a
Hypotheses.
$3
3560118
650
4
$a
Normal distribution.
$3
3561025
650
4
$a
Dissertations & theses.
$3
3560115
650
4
$a
Variables.
$3
3548259
650
4
$a
Advisors.
$3
3560734
650
4
$a
Confidence intervals.
$3
566017
650
4
$a
Bias.
$2
gtt
$3
1374837
653
$a
Graphical modeling
653
$a
High-dimensional inference
653
$a
Machine learning
653
$a
Matrix completion
690
$a
0308
690
$a
0800
690
$a
0306
690
$a
0463
710
2
$a
University of Washington.
$b
Biostatistics - Public Health.
$3
3180015
773
0
$t
Dissertations Abstracts International
$g
83-02B.
790
$a
0250
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28547011
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9468415
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入