語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Three Essays on the Role of Unstructured Data in Marketing Research.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Three Essays on the Role of Unstructured Data in Marketing Research./
作者:
Chakraborty, Ishita Sunity Kumar.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
146 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Contained By:
Dissertations Abstracts International83-02B.
標題:
Computer engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28321251
ISBN:
9798522999544
Three Essays on the Role of Unstructured Data in Marketing Research.
Chakraborty, Ishita Sunity Kumar.
Three Essays on the Role of Unstructured Data in Marketing Research.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 146 p.
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
Thesis (Ph.D.)--Yale University, 2021.
This item must not be sold to any third party vendors.
This thesis studies the use of firm and user-generated unstructured data (e.g., text and videos) for improving market research combining advances in text, audio and video processing with traditional economic modeling. The first chapter is joint work with K. Sudhir and Minkyung Kim. It addresses two significant challenges in using online text reviews to obtain fine-grained attribute level sentiment ratings. First, we develop a deep learning convolutional-LSTM hybrid model to account for language structure, in contrast to methods that rely on word frequency. The convolutional layer accounts for the spatial structure (adjacent word groups or phrases) and LSTM accounts for the sequential structure of language (sentiment distributed and modified across non-adjacent phrases). Second, we address the problem of missing attributes in text in constructing attribute sentiment scores---as reviewers write only about a subset of attributes and remain silent on others. We develop a model-based imputation strategy using a structural model of heterogeneous rating behavior. Using Yelp restaurant review data, we show superior accuracy in converting text to numerical attribute sentiment scores with our model. The structural model finds three reviewer segments with different motivations: status seeking, altruism/want voice, and need to vent/praise. Interestingly, our results show that reviewers write to inform and vent/praise, but not based on attribute importance. Our heterogeneous model-based imputation performs better than other common imputations; and importantly leads to managerially significant corrections in restaurant attribute ratings. The second essay, which is joint work with Aniko Oery and Joyee Deb is an information-theoretic model to study what causes selection in valence in user-generated reviews. The propensity of consumers to engage in word-of-mouth (WOM) differs after good versus bad experiences, which can result in positive or negative selection of user-generated reviews. We show how the strength of brand image (dispersion of consumer beliefs about quality) and the informativeness of good and bad experiences impacts selection of WOM in equilibrium. WOM is costly: Early adopters talk only if they can affect the receiver's purchase. If the brand image is strong (consumer beliefs are homogeneous), only negative WOM can arise. With a weak brand image or heterogeneous beliefs, positive WOM can occur if positive experiences are sufficiently informative. Using data from Yelp.com, we show how strong brands (chain restaurants) systematically receive lower evaluations controlling for several restaurant and reviewer characteristics.The third essay which is joint work with K.Sudhir and Khai Chiong studies success factors of persuasive sales pitches from a multi-modal video dataset of buyer-seller interactions. A successful sales pitch is an outcome of both the content of the message as well as style of delivery. Moreover, unlike one-way interactions like speeches, sales pitches are a two-way process and hence interactivity as well as matching the wavelength of the buyer are also critical to the success of the pitch. We extract four groups of features: content-related, style-related, interactivity and similarity in order to build a predictive model of sales pitch effectiveness.
ISBN: 9798522999544Subjects--Topical Terms:
621879
Computer engineering.
Subjects--Index Terms:
Deep learning
Three Essays on the Role of Unstructured Data in Marketing Research.
LDR
:04511nmm a2200397 4500
001
2345895
005
20220613064809.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798522999544
035
$a
(MiAaPQ)AAI28321251
035
$a
AAI28321251
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Chakraborty, Ishita Sunity Kumar.
$3
3684908
245
1 0
$a
Three Essays on the Role of Unstructured Data in Marketing Research.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
146 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-02, Section: B.
500
$a
Advisor: Sudhir, K.
502
$a
Thesis (Ph.D.)--Yale University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
This thesis studies the use of firm and user-generated unstructured data (e.g., text and videos) for improving market research combining advances in text, audio and video processing with traditional economic modeling. The first chapter is joint work with K. Sudhir and Minkyung Kim. It addresses two significant challenges in using online text reviews to obtain fine-grained attribute level sentiment ratings. First, we develop a deep learning convolutional-LSTM hybrid model to account for language structure, in contrast to methods that rely on word frequency. The convolutional layer accounts for the spatial structure (adjacent word groups or phrases) and LSTM accounts for the sequential structure of language (sentiment distributed and modified across non-adjacent phrases). Second, we address the problem of missing attributes in text in constructing attribute sentiment scores---as reviewers write only about a subset of attributes and remain silent on others. We develop a model-based imputation strategy using a structural model of heterogeneous rating behavior. Using Yelp restaurant review data, we show superior accuracy in converting text to numerical attribute sentiment scores with our model. The structural model finds three reviewer segments with different motivations: status seeking, altruism/want voice, and need to vent/praise. Interestingly, our results show that reviewers write to inform and vent/praise, but not based on attribute importance. Our heterogeneous model-based imputation performs better than other common imputations; and importantly leads to managerially significant corrections in restaurant attribute ratings. The second essay, which is joint work with Aniko Oery and Joyee Deb is an information-theoretic model to study what causes selection in valence in user-generated reviews. The propensity of consumers to engage in word-of-mouth (WOM) differs after good versus bad experiences, which can result in positive or negative selection of user-generated reviews. We show how the strength of brand image (dispersion of consumer beliefs about quality) and the informativeness of good and bad experiences impacts selection of WOM in equilibrium. WOM is costly: Early adopters talk only if they can affect the receiver's purchase. If the brand image is strong (consumer beliefs are homogeneous), only negative WOM can arise. With a weak brand image or heterogeneous beliefs, positive WOM can occur if positive experiences are sufficiently informative. Using data from Yelp.com, we show how strong brands (chain restaurants) systematically receive lower evaluations controlling for several restaurant and reviewer characteristics.The third essay which is joint work with K.Sudhir and Khai Chiong studies success factors of persuasive sales pitches from a multi-modal video dataset of buyer-seller interactions. A successful sales pitch is an outcome of both the content of the message as well as style of delivery. Moreover, unlike one-way interactions like speeches, sales pitches are a two-way process and hence interactivity as well as matching the wavelength of the buyer are also critical to the success of the pitch. We extract four groups of features: content-related, style-related, interactivity and similarity in order to build a predictive model of sales pitch effectiveness.
590
$a
School code: 0265.
650
4
$a
Computer engineering.
$3
621879
650
4
$a
Language.
$3
643551
650
4
$a
Dictionaries.
$3
644709
650
4
$a
Deep learning.
$3
3554982
650
4
$a
Sentiment analysis.
$2
lcstt
$3
3266790
650
4
$a
Estimates.
$3
3561047
650
4
$a
Experiments.
$3
525909
650
4
$a
Text analysis.
$3
3561686
650
4
$a
Classification.
$3
595585
650
4
$a
Ratings & rankings.
$3
3562221
653
$a
Deep learning
653
$a
Digital marketing
653
$a
Machine learning
653
$a
Social media
653
$a
Unstructured data
653
$a
Word of mouth
690
$a
0338
690
$a
0464
690
$a
0501
690
$a
0679
710
2
$a
Yale University.
$b
Management.
$3
3541236
773
0
$t
Dissertations Abstracts International
$g
83-02B.
790
$a
0265
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28321251
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9468333
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入