語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Quantifying Change Risk in Cloud Computing Environments.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quantifying Change Risk in Cloud Computing Environments./
作者:
Alfred, Andre O.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2022,
面頁冊數:
132 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-06, Section: B.
Contained By:
Dissertations Abstracts International83-06B.
標題:
Information technology. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28864343
ISBN:
9798759946373
Quantifying Change Risk in Cloud Computing Environments.
Alfred, Andre O.
Quantifying Change Risk in Cloud Computing Environments.
- Ann Arbor : ProQuest Dissertations & Theses, 2022 - 132 p.
Source: Dissertations Abstracts International, Volume: 83-06, Section: B.
Thesis (D.Engr.)--The George Washington University, 2022.
This item must not be sold to any third party vendors.
This research introduces a System Dynamics model that engineers can use to simulate the expected value of economic damage to cloud customers if a change fails. As cloud adoption rapidly increases, the revenue loss potential of cloud customers due to human error can be significant. The model's parameters enables an engineer to incorporate a quantitatively derived worst-case impact from the customer's perspective. Typical technical change management processes in organizations are qualitative technical judgments of risk and implications based on the engineer's knowledge of making the change. It is unlikely that the engineer working on infrastructure components has any visibility of the change's economic risk. The practical application of this model focuses on simulating the probability of technical human errors relating to the compute portion of a typical cloud architecture. Engineers can quickly adapt the model for any layer of the cloud and any class of errors. .
ISBN: 9798759946373Subjects--Topical Terms:
532993
Information technology.
Subjects--Index Terms:
Worst-case impact
Quantifying Change Risk in Cloud Computing Environments.
LDR
:02170nmm a2200385 4500
001
2344943
005
20220531062221.5
008
241004s2022 ||||||||||||||||| ||eng d
020
$a
9798759946373
035
$a
(MiAaPQ)AAI28864343
035
$a
AAI28864343
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Alfred, Andre O.
$0
(orcid)0000-0002-9273-5746
$3
3683791
245
1 0
$a
Quantifying Change Risk in Cloud Computing Environments.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2022
300
$a
132 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-06, Section: B.
500
$a
Advisor: Etemadi, Amir.
502
$a
Thesis (D.Engr.)--The George Washington University, 2022.
506
$a
This item must not be sold to any third party vendors.
520
$a
This research introduces a System Dynamics model that engineers can use to simulate the expected value of economic damage to cloud customers if a change fails. As cloud adoption rapidly increases, the revenue loss potential of cloud customers due to human error can be significant. The model's parameters enables an engineer to incorporate a quantitatively derived worst-case impact from the customer's perspective. Typical technical change management processes in organizations are qualitative technical judgments of risk and implications based on the engineer's knowledge of making the change. It is unlikely that the engineer working on infrastructure components has any visibility of the change's economic risk. The practical application of this model focuses on simulating the probability of technical human errors relating to the compute portion of a typical cloud architecture. Engineers can quickly adapt the model for any layer of the cloud and any class of errors. .
590
$a
School code: 0075.
650
4
$a
Information technology.
$3
532993
650
4
$a
Industrial engineering.
$3
526216
650
4
$a
Systems science.
$3
3168411
653
$a
Worst-case impact
653
$a
System dynamics
653
$a
Economic damage
653
$a
Cloud architecture
653
$a
Change management
653
$a
Human error
690
$a
0489
690
$a
0546
690
$a
0790
710
2
$a
The George Washington University.
$b
Engineering Management.
$3
1262973
773
0
$t
Dissertations Abstracts International
$g
83-06B.
790
$a
0075
791
$a
D.Engr.
792
$a
2022
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28864343
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9467381
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入