語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
FindBook
Google Book
Amazon
博客來
Advances in Spatial Statistics and Inference Methods for Markov Population Models.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advances in Spatial Statistics and Inference Methods for Markov Population Models./
作者:
Walder, Adam.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
111 p.
附註:
Source: Dissertations Abstracts International, Volume: 83-03, Section: B.
Contained By:
Dissertations Abstracts International83-03B.
標題:
Infectious diseases. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28841721
ISBN:
9798460447749
Advances in Spatial Statistics and Inference Methods for Markov Population Models.
Walder, Adam.
Advances in Spatial Statistics and Inference Methods for Markov Population Models.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 111 p.
Source: Dissertations Abstracts International, Volume: 83-03, Section: B.
Thesis (Ph.D.)--The Pennsylvania State University, 2021.
This item must not be sold to any third party vendors.
Spatial generalized linear mixed models (SGLMMs) commonly rely on Gaussian random fields (GRFs) to capture spatially correlated error. We investigate the results of replacing Gaussian processes with Laplace moving averages (LMAs) in SGLMMs. We demonstrate that LMAs offer improved predictive power when the data exhibits localized spikes in the response. SGLMMs with LMAs are shown to maintain analogous parameter inference and similar computing to Gaussian SGLMMs. We propose a novel discrete space LMA model for irregular lattices and construct conjugate samplers for LMAs with georeferenced and areal support. We provide a Bayesian analysis of SGLMMs with LMAs and GRFs over multiple data support and response types We develop methods for privatizing spatial location data, such as spatial locations of individual disease cases. We propose two novel Bayesian methods for generating synthetic location data based on log-Gaussian Cox processes (LGCPs). We show that conditional predictive ordinate (CPO) estimates can easily be obtained for point process data. We construct a novel risk metric that utilizes CPO estimates to evaluate individual disclosure risks. We adapt the propensity mean square error (pMSE) data utility metric for LGCPs. We demonstrate that our synthesis methods offer an improved risk vs. utility balance in comparison to radial synthesis with a case study of Dr. John Snow's cholera outbreak data. We demonstrate how to perform inference on Markov population processes with Laplace approximations. We derive a sparse covariance structure for the linear noise approximation (LNA) which offers a joint Gaussian likelihood for Markov population models based solely on the solution to a set of deterministic equations. We show that Laplace approximations allow inference with LNAs to be parallelized and require no stochastic infill. We also demonstrate that our method offers comparable accuracy to MCMC on a simulated Susceptible-Infected-Susceptible data set. We use Laplace approximations to fit a stochastic susceptible-exposed-infected-recovered system to the Princess Diamond COVID-19 cruise ship data set.
ISBN: 9798460447749Subjects--Topical Terms:
2179310
Infectious diseases.
Subjects--Index Terms:
Conditional predictive ordinate
Advances in Spatial Statistics and Inference Methods for Markov Population Models.
LDR
:03259nmm a2200337 4500
001
2344932
005
20220531062218.5
008
241004s2021 ||||||||||||||||| ||eng d
020
$a
9798460447749
035
$a
(MiAaPQ)AAI28841721
035
$a
(MiAaPQ)PennState_24362arw39
035
$a
AAI28841721
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Walder, Adam.
$3
3683776
245
1 0
$a
Advances in Spatial Statistics and Inference Methods for Markov Population Models.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
111 p.
500
$a
Source: Dissertations Abstracts International, Volume: 83-03, Section: B.
500
$a
Advisor: Hanks, Ephraim.
502
$a
Thesis (Ph.D.)--The Pennsylvania State University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Spatial generalized linear mixed models (SGLMMs) commonly rely on Gaussian random fields (GRFs) to capture spatially correlated error. We investigate the results of replacing Gaussian processes with Laplace moving averages (LMAs) in SGLMMs. We demonstrate that LMAs offer improved predictive power when the data exhibits localized spikes in the response. SGLMMs with LMAs are shown to maintain analogous parameter inference and similar computing to Gaussian SGLMMs. We propose a novel discrete space LMA model for irregular lattices and construct conjugate samplers for LMAs with georeferenced and areal support. We provide a Bayesian analysis of SGLMMs with LMAs and GRFs over multiple data support and response types We develop methods for privatizing spatial location data, such as spatial locations of individual disease cases. We propose two novel Bayesian methods for generating synthetic location data based on log-Gaussian Cox processes (LGCPs). We show that conditional predictive ordinate (CPO) estimates can easily be obtained for point process data. We construct a novel risk metric that utilizes CPO estimates to evaluate individual disclosure risks. We adapt the propensity mean square error (pMSE) data utility metric for LGCPs. We demonstrate that our synthesis methods offer an improved risk vs. utility balance in comparison to radial synthesis with a case study of Dr. John Snow's cholera outbreak data. We demonstrate how to perform inference on Markov population processes with Laplace approximations. We derive a sparse covariance structure for the linear noise approximation (LNA) which offers a joint Gaussian likelihood for Markov population models based solely on the solution to a set of deterministic equations. We show that Laplace approximations allow inference with LNAs to be parallelized and require no stochastic infill. We also demonstrate that our method offers comparable accuracy to MCMC on a simulated Susceptible-Infected-Susceptible data set. We use Laplace approximations to fit a stochastic susceptible-exposed-infected-recovered system to the Princess Diamond COVID-19 cruise ship data set.
590
$a
School code: 0176.
650
4
$a
Infectious diseases.
$3
2179310
650
4
$a
Malaria.
$2
larpcal
$3
828860
650
4
$a
Population.
$3
518693
650
4
$a
Design of experiments.
$3
3681394
650
4
$a
Criminal statistics.
$3
847093
650
4
$a
Partial differential equations.
$3
2180177
650
4
$a
Datasets.
$3
3541416
650
4
$a
Bayesian analysis.
$3
3564297
650
4
$a
Estimates.
$3
3561047
650
4
$a
Generalized linear models.
$3
3561810
650
4
$a
Snow.
$3
569416
650
4
$a
Stomach cancer.
$3
3683777
650
4
$a
Cholera.
$3
2071496
650
4
$a
Data processing.
$3
680224
650
4
$a
Approximation.
$3
3560410
650
4
$a
Data analysis.
$2
bisacsh
$3
3515250
650
4
$a
Privacy.
$3
528582
650
4
$a
Tropical diseases.
$3
3559964
650
4
$a
Statistics.
$3
517247
650
4
$a
Biostatistics.
$3
1002712
653
$a
Conditional predictive ordinate
653
$a
Gaussian random fields
690
$a
0463
690
$a
0308
710
2
$a
The Pennsylvania State University.
$3
699896
773
0
$t
Dissertations Abstracts International
$g
83-03B.
790
$a
0176
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28841721
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9467370
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入