Linked to FindBook      Google Book      Amazon      博客來     
  • Artificial intelligence for high energy physics
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Artificial intelligence for high energy physics/ editors, Paolo Calafiura, David Rousseau, Kazuhiro Terao.
    other author: Calafiura, Paolo.
    Published: Singapore :World Scientific, : c2022.,
    Description: 1 online resource (828 p.)
    [NT 15003449]: Introduction -- Part I: Discriminative models for signal/background boosting -- Boosted decision trees -- Deep learning from four vectors -- Anomaly detection for physics analysis and less than supervised learning -- Part II: Data quality monitoring -- Data quality monitoring anomaly detection -- Part III: Generative models -- Generative models for fast simulation -- Generative networks for LHC events -- Part IV: Machine learning platforms -- Distributed training and optimization of neural networks -- Machine learning for triggering and data acquisition -- Part V: Detector data reconstruction -- End-to-end analyses using image classification -- Clustering -- Graph neural networks for particle tracking and reconstruction -- Part VI: Jet classification and particle identification from low level -- Image-based jet analysis -- Particle identification in neutrino detectors -- Sequence-based learning -- Part VII: Physics inference -- Simulation-based inference methods for particle physics -- Dealing with nuisance parameters -- Bayesian neural networks -- Parton distribution functions -- Part VIII: Scientific competitions and open datasets -- Machine learning scientific competitions and datasets.
    Subject: Particles (Nuclear physics) -
    Online resource: https://www.worldscientific.com/worldscibooks/10.1142/12200#t=toc
    ISBN: 9789811234033
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9463806 電子資源 11.線上閱覽_V 電子書 EB QC793.2 .A78 2022 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login