FindBook      Google Book      Amazon      博客來     
  • Artificial intelligence for high energy physics
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Artificial intelligence for high energy physics/ editors, Paolo Calafiura, David Rousseau, Kazuhiro Terao.
    其他作者: Calafiura, Paolo.
    出版者: Singapore :World Scientific, : c2022.,
    面頁冊數: 1 online resource (828 p.)
    內容註: Introduction -- Part I: Discriminative models for signal/background boosting -- Boosted decision trees -- Deep learning from four vectors -- Anomaly detection for physics analysis and less than supervised learning -- Part II: Data quality monitoring -- Data quality monitoring anomaly detection -- Part III: Generative models -- Generative models for fast simulation -- Generative networks for LHC events -- Part IV: Machine learning platforms -- Distributed training and optimization of neural networks -- Machine learning for triggering and data acquisition -- Part V: Detector data reconstruction -- End-to-end analyses using image classification -- Clustering -- Graph neural networks for particle tracking and reconstruction -- Part VI: Jet classification and particle identification from low level -- Image-based jet analysis -- Particle identification in neutrino detectors -- Sequence-based learning -- Part VII: Physics inference -- Simulation-based inference methods for particle physics -- Dealing with nuisance parameters -- Bayesian neural networks -- Parton distribution functions -- Part VIII: Scientific competitions and open datasets -- Machine learning scientific competitions and datasets.
    標題: Particles (Nuclear physics) -
    電子資源: https://www.worldscientific.com/worldscibooks/10.1142/12200#t=toc
    ISBN: 9789811234033
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9463806 電子資源 11.線上閱覽_V 電子書 EB QC793.2 .A78 2022 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入