Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Coherent sheaves, superconnections, ...
~
Bismut, Jean-Michel.
Linked to FindBook
Google Book
Amazon
博客來
Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck
Record Type:
Electronic resources : Monograph/item
Title/Author:
Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck/ by Jean-Michel Bismut, Shu Shen, Zhaoting Wei.
Author:
Bismut, Jean-Michel.
other author:
Shen, Shu.
Published:
Cham :Springer International Publishing : : 2023.,
Description:
x, 184 p. :illustrations, digital ;24 cm.
Contained By:
Springer Nature eBook
Subject:
Grothendieck groups. -
Online resource:
https://doi.org/10.1007/978-3-031-27234-9
ISBN:
9783031272349
Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck
Bismut, Jean-Michel.
Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck
[electronic resource] /by Jean-Michel Bismut, Shu Shen, Zhaoting Wei. - Cham :Springer International Publishing :2023. - x, 184 p. :illustrations, digital ;24 cm. - Progress in mathematics,v. 3472296-505X ;. - Progress in mathematics ;v. 347..
This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck theorem. One main tool used is the equivalence of categories established by Block between the derived category of bounded complexes with coherent cohomology and the homotopy category of antiholomorphic superconnections. Chern-Weil theoretic techniques are then used to construct forms that represent the Chern character. The main theorem is then established using methods of analysis, by combining local index theory with the hypoelliptic Laplacian. Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck is an important contribution to both the geometric and analytic study of complex manifolds and, as such, it will be a valuable resource for many researchers in geometry, analysis, and mathematical physics.
ISBN: 9783031272349
Standard No.: 10.1007/978-3-031-27234-9doiSubjects--Topical Terms:
888779
Grothendieck groups.
LC Class. No.: QA613.618
Dewey Class. No.: 516.183
Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck
LDR
:02084nmm a2200325 a 4500
001
2336251
003
DE-He213
005
20231113210400.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031272349
$q
(electronic bk.)
020
$a
9783031272332
$q
(paper)
024
7
$a
10.1007/978-3-031-27234-9
$2
doi
035
$a
978-3-031-27234-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA613.618
072
7
$a
PBF
$2
bicssc
072
7
$a
MAT002010
$2
bisacsh
072
7
$a
PBF
$2
thema
082
0 4
$a
516.183
$2
23
090
$a
QA613.618
$b
.B622 2023
100
1
$a
Bismut, Jean-Michel.
$3
648157
245
1 0
$a
Coherent sheaves, superconnections, and Riemann-Roch-Grothendieck
$h
[electronic resource] /
$c
by Jean-Michel Bismut, Shu Shen, Zhaoting Wei.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2023.
300
$a
x, 184 p. :
$b
illustrations, digital ;
$c
24 cm.
490
1
$a
Progress in mathematics,
$x
2296-505X ;
$v
v. 347
520
$a
This monograph addresses two significant related questions in complex geometry: the construction of a Chern character on the Grothendieck group of coherent sheaves of a compact complex manifold with values in its Bott-Chern cohomology, and the proof of a corresponding Riemann-Roch-Grothendieck theorem. One main tool used is the equivalence of categories established by Block between the derived category of bounded complexes with coherent cohomology and the homotopy category of antiholomorphic superconnections. Chern-Weil theoretic techniques are then used to construct forms that represent the Chern character. The main theorem is then established using methods of analysis, by combining local index theory with the hypoelliptic Laplacian. Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck is an important contribution to both the geometric and analytic study of complex manifolds and, as such, it will be a valuable resource for many researchers in geometry, analysis, and mathematical physics.
650
0
$a
Grothendieck groups.
$3
888779
650
0
$a
Chern classes.
$3
728294
650
0
$a
Complexes.
$3
707345
650
1 4
$a
Category Theory, Homological Algebra.
$3
899944
650
2 4
$a
K-Theory.
$3
897432
650
2 4
$a
Differential Equations.
$3
907890
650
2 4
$a
Differential Geometry.
$3
891003
700
1
$a
Shen, Shu.
$3
3669243
700
1
$a
Wei, Zhaoting.
$3
3669244
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Progress in mathematics ;
$v
v. 347.
$3
3669245
856
4 0
$u
https://doi.org/10.1007/978-3-031-27234-9
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9462456
電子資源
11.線上閱覽_V
電子書
EB QA613.618
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login