語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Representations of SU(2,1) in Fourie...
~
Bruggeman, Roelof W.
FindBook
Google Book
Amazon
博客來
Representations of SU(2,1) in Fourier term modules
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Representations of SU(2,1) in Fourier term modules/ by Roelof W. Bruggeman, Roberto J. Miatello.
作者:
Bruggeman, Roelof W.
其他作者:
Miatello, Roberto J.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
xi, 210 p. :ill. (chiefly color), digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Fourier analysis. -
電子資源:
https://doi.org/10.1007/978-3-031-43192-0
ISBN:
9783031431920
Representations of SU(2,1) in Fourier term modules
Bruggeman, Roelof W.
Representations of SU(2,1) in Fourier term modules
[electronic resource] /by Roelof W. Bruggeman, Roberto J. Miatello. - Cham :Springer Nature Switzerland :2023. - xi, 210 p. :ill. (chiefly color), digital ;24 cm. - Lecture notes in mathematics,v. 23401617-9692 ;. - Lecture notes in mathematics ;v. 2340..
This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the "abelian" Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the "non-abelian" modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included. These results can be applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms. Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed.
ISBN: 9783031431920
Standard No.: 10.1007/978-3-031-43192-0doiSubjects--Topical Terms:
532730
Fourier analysis.
LC Class. No.: QA403.5
Dewey Class. No.: 515.2433
Representations of SU(2,1) in Fourier term modules
LDR
:02134nmm a2200325 a 4500
001
2335617
003
DE-He213
005
20231106200634.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031431920
$q
(electronic bk.)
020
$a
9783031431913
$q
(paper)
024
7
$a
10.1007/978-3-031-43192-0
$2
doi
035
$a
978-3-031-43192-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA403.5
072
7
$a
PBH
$2
bicssc
072
7
$a
MAT022000
$2
bisacsh
072
7
$a
PBH
$2
thema
082
0 4
$a
515.2433
$2
23
090
$a
QA403.5
$b
.B891 2023
100
1
$a
Bruggeman, Roelof W.
$3
1086537
245
1 0
$a
Representations of SU(2,1) in Fourier term modules
$h
[electronic resource] /
$c
by Roelof W. Bruggeman, Roberto J. Miatello.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2023.
300
$a
xi, 210 p. :
$b
ill. (chiefly color), digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2340
520
$a
This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the "abelian" Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the "non-abelian" modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included. These results can be applied to prove a completeness result for Poincaré series in spaces of square integrable automorphic forms. Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincaré series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed.
650
0
$a
Fourier analysis.
$3
532730
650
1 4
$a
Number Theory.
$3
891078
650
2 4
$a
Fourier Analysis.
$3
891095
650
2 4
$a
Topological Groups and Lie Groups.
$3
3593340
700
1
$a
Miatello, Roberto J.
$3
952207
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v. 2340.
$3
3668166
856
4 0
$u
https://doi.org/10.1007/978-3-031-43192-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9461822
電子資源
11.線上閱覽_V
電子書
EB QA403.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入