語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Handling uncertainty in artificial i...
~
Chaki, Jyotismita.
FindBook
Google Book
Amazon
博客來
Handling uncertainty in artificial intelligence
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Handling uncertainty in artificial intelligence/ by Jyotismita Chaki.
作者:
Chaki, Jyotismita.
出版者:
Singapore :Springer Nature Singapore : : 2023.,
面頁冊數:
xiii, 101 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction to handling uncertainty in artificial intelligence -- Probability and Bayesian Theory to Handle Uncertainty in artificial intelligence -- The Dempster-Shafer Theory to handle uncertainty in artificial intelligence -- Certainty factor and evidential reasoning to handle uncertainty in artificial intelligence -- A fuzzy logic-based approach to handle uncertainty in artificial intelligence -- Decision-making under uncertainty in artificial intelligence -- Applications of different methods to handle uncertainty in artificial intelligence.
Contained By:
Springer Nature eBook
標題:
Uncertainty (Information theory) -
電子資源:
https://doi.org/10.1007/978-981-99-5333-2
ISBN:
9789819953332
Handling uncertainty in artificial intelligence
Chaki, Jyotismita.
Handling uncertainty in artificial intelligence
[electronic resource] /by Jyotismita Chaki. - Singapore :Springer Nature Singapore :2023. - xiii, 101 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in computational intelligence,2625-3712. - SpringerBriefs in computational intelligence..
Introduction to handling uncertainty in artificial intelligence -- Probability and Bayesian Theory to Handle Uncertainty in artificial intelligence -- The Dempster-Shafer Theory to handle uncertainty in artificial intelligence -- Certainty factor and evidential reasoning to handle uncertainty in artificial intelligence -- A fuzzy logic-based approach to handle uncertainty in artificial intelligence -- Decision-making under uncertainty in artificial intelligence -- Applications of different methods to handle uncertainty in artificial intelligence.
This book demonstrates different methods (as well as real-life examples) of handling uncertainty like probability and Bayesian theory, Dempster-Shafer theory, certainty factor and evidential reasoning, fuzzy logic-based approach, utility theory and expected utility theory. At the end, highlights will be on the use of these methods which can help to make decisions under uncertain situations. This book assists scholars and students who might like to learn about this area as well as others who may have begun without a formal presentation. The book is comprehensive, but it prohibits unnecessary mathematics.
ISBN: 9789819953332
Standard No.: 10.1007/978-981-99-5333-2doiSubjects--Topical Terms:
587701
Uncertainty (Information theory)
LC Class. No.: Q375
Dewey Class. No.: 003.54
Handling uncertainty in artificial intelligence
LDR
:02225nmm a2200337 a 4500
001
2333955
003
DE-He213
005
20230806073059.0
006
m d
007
cr nn 008maaau
008
240402s2023 si s 0 eng d
020
$a
9789819953332
$q
(electronic bk.)
020
$a
9789819953325
$q
(paper)
024
7
$a
10.1007/978-981-99-5333-2
$2
doi
035
$a
978-981-99-5333-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q375
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
003.54
$2
23
090
$a
Q375
$b
.C435 2023
100
1
$a
Chaki, Jyotismita.
$3
3444525
245
1 0
$a
Handling uncertainty in artificial intelligence
$h
[electronic resource] /
$c
by Jyotismita Chaki.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2023.
300
$a
xiii, 101 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computational intelligence,
$x
2625-3712
505
0
$a
Introduction to handling uncertainty in artificial intelligence -- Probability and Bayesian Theory to Handle Uncertainty in artificial intelligence -- The Dempster-Shafer Theory to handle uncertainty in artificial intelligence -- Certainty factor and evidential reasoning to handle uncertainty in artificial intelligence -- A fuzzy logic-based approach to handle uncertainty in artificial intelligence -- Decision-making under uncertainty in artificial intelligence -- Applications of different methods to handle uncertainty in artificial intelligence.
520
$a
This book demonstrates different methods (as well as real-life examples) of handling uncertainty like probability and Bayesian theory, Dempster-Shafer theory, certainty factor and evidential reasoning, fuzzy logic-based approach, utility theory and expected utility theory. At the end, highlights will be on the use of these methods which can help to make decisions under uncertain situations. This book assists scholars and students who might like to learn about this area as well as others who may have begun without a formal presentation. The book is comprehensive, but it prohibits unnecessary mathematics.
650
0
$a
Uncertainty (Information theory)
$3
587701
650
0
$a
Artificial intelligence.
$3
516317
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Algorithms.
$3
536374
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computational intelligence.
$3
3381676
856
4 0
$u
https://doi.org/10.1007/978-981-99-5333-2
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9460160
電子資源
11.線上閱覽_V
電子書
EB Q375
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入