語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep reinforcement learning processo...
~
Lee, Juhyoung.
FindBook
Google Book
Amazon
博客來
Deep reinforcement learning processor design for mobile applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Deep reinforcement learning processor design for mobile applications/ by Juhyoung Lee, Hoi-Jun Yoo.
作者:
Lee, Juhyoung.
其他作者:
Yoo, Hoi-Jun.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
vi, 101 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- Background of Deep Reinforcement Learning -- Group-Sparse Training Algorithm for Accelerating Deep Reinforcement Learning -- An Energy-Efficient Deep Reinforcement Learning Processor Design -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Exponent-Computing-in-Memory for DNN Training Processor with Energy-Efficient Heterogeneous Floating-point Computing Architecture.
Contained By:
Springer Nature eBook
標題:
Deep learning (Machine learning) -
電子資源:
https://doi.org/10.1007/978-3-031-36793-9
ISBN:
9783031367939
Deep reinforcement learning processor design for mobile applications
Lee, Juhyoung.
Deep reinforcement learning processor design for mobile applications
[electronic resource] /by Juhyoung Lee, Hoi-Jun Yoo. - Cham :Springer Nature Switzerland :2023. - vi, 101 p. :ill. (some col.), digital ;24 cm.
Introduction -- Background of Deep Reinforcement Learning -- Group-Sparse Training Algorithm for Accelerating Deep Reinforcement Learning -- An Energy-Efficient Deep Reinforcement Learning Processor Design -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Exponent-Computing-in-Memory for DNN Training Processor with Energy-Efficient Heterogeneous Floating-point Computing Architecture.
This book discusses the acceleration of deep reinforcement learning (DRL), which may be the next step in the burst success of artificial intelligence (AI) The authors address acceleration systems which enable DRL on area-limited & battery-limited mobile devices. Methods are described that enable DRL optimization at the algorithm-, architecture-, and circuit-levels of abstraction. Enables deep reinforcement learning (DRL) optimization at algorithm-, architecture-, and circuit-levels of abstraction; Includes methodologies that can reduce the high cost of DRL; Uses analysis of computational workload characteristics of DRL in the context of acceleration.
ISBN: 9783031367939
Standard No.: 10.1007/978-3-031-36793-9doiSubjects--Topical Terms:
3538509
Deep learning (Machine learning)
LC Class. No.: Q325.73
Dewey Class. No.: 006.31
Deep reinforcement learning processor design for mobile applications
LDR
:02142nmm a2200325 a 4500
001
2333900
003
DE-He213
005
20230814180157.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031367939
$q
(electronic bk.)
020
$a
9783031367922
$q
(paper)
024
7
$a
10.1007/978-3-031-36793-9
$2
doi
035
$a
978-3-031-36793-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.73
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.73
$b
.L478 2023
100
1
$a
Lee, Juhyoung.
$3
3665013
245
1 0
$a
Deep reinforcement learning processor design for mobile applications
$h
[electronic resource] /
$c
by Juhyoung Lee, Hoi-Jun Yoo.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2023.
300
$a
vi, 101 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Introduction -- Background of Deep Reinforcement Learning -- Group-Sparse Training Algorithm for Accelerating Deep Reinforcement Learning -- An Energy-Efficient Deep Reinforcement Learning Processor Design -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Low-power Autonomous Adaptation System with Deep Reinforcement Learning -- Exponent-Computing-in-Memory for DNN Training Processor with Energy-Efficient Heterogeneous Floating-point Computing Architecture.
520
$a
This book discusses the acceleration of deep reinforcement learning (DRL), which may be the next step in the burst success of artificial intelligence (AI) The authors address acceleration systems which enable DRL on area-limited & battery-limited mobile devices. Methods are described that enable DRL optimization at the algorithm-, architecture-, and circuit-levels of abstraction. Enables deep reinforcement learning (DRL) optimization at algorithm-, architecture-, and circuit-levels of abstraction; Includes methodologies that can reduce the high cost of DRL; Uses analysis of computational workload characteristics of DRL in the context of acceleration.
650
0
$a
Deep learning (Machine learning)
$3
3538509
650
0
$a
Reinforcement learning.
$3
1006373
650
0
$a
Mobile communication systems
$x
Technological innovations.
$3
595752
650
1 4
$a
Electronic Circuits and Systems.
$3
3538814
650
2 4
$a
Embedded Systems.
$3
3592715
650
2 4
$a
Processor Architectures.
$3
892680
700
1
$a
Yoo, Hoi-Jun.
$3
1531350
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-36793-9
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9460105
電子資源
11.線上閱覽_V
電子書
EB Q325.73
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入