語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Matrix and operator equations and ap...
~
SpringerLink (Online service)
FindBook
Google Book
Amazon
博客來
Matrix and operator equations and applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Matrix and operator equations and applications/ edited by Mohammad Sal Moslehian.
其他作者:
Moslehian, Mohammad Sal.
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
x, 765 p. :ill., digital ;24 cm.
內容註:
Preface -- Part I Matrix Equations -- Chapter 1. Existence and Representations of Solutions to Some Constrained Systems of Matrix Equations -- Chapter 2. Quaternion Two-Sided Matrix Equations with Specific Constraints -- Chapter 3. Matrices over Quaternion Algebras -- Chapter 4. Direct Methods of solving quaternion matrix equation based on STP -- Chapter 5. Geometric Mean and Matrix Quadratic Equations -- Chapter 6. Yang-Baxter-like Matrix Equation: A Road Less Taken -- Chapter 7. Hermitian Polynomial Matrix Equations and Applications -- Chapter 8. Inequalities for Matrix Exponentials and Their Extensions to Lie Groups -- Chapter 9. Numerical Ranges of Operators and Matrices -- Part II Operator Equations -- Chapter 10. Stability and Controllability of Operator Differential Equations -- Chapter 11. On Singular Integral Operators with Shifts -- Chapter 12. Berezin number and norm inequalities for operators in Hilbert and semi-Hilbert spaces -- Chapter 13. Norm Equalities for Derivations -- Chapter 14. On Semicircular Elements Induced by Connected Finite Graphs -- Chapter 15. Hilbert C*-module for analyzing structured data -- Chapter 16. Iterative Processes and Integral Equations of the Second Kind -- Chapter 17. The Daugavet equation: linear and non-linear recent results.
Contained By:
Springer Nature eBook
標題:
Matrices. -
電子資源:
https://doi.org/10.1007/978-3-031-25386-7
ISBN:
9783031253867
Matrix and operator equations and applications
Matrix and operator equations and applications
[electronic resource] /edited by Mohammad Sal Moslehian. - Cham :Springer Nature Switzerland :2023. - x, 765 p. :ill., digital ;24 cm. - Mathematics online first collections,2730-6348. - Mathematics online first collections..
Preface -- Part I Matrix Equations -- Chapter 1. Existence and Representations of Solutions to Some Constrained Systems of Matrix Equations -- Chapter 2. Quaternion Two-Sided Matrix Equations with Specific Constraints -- Chapter 3. Matrices over Quaternion Algebras -- Chapter 4. Direct Methods of solving quaternion matrix equation based on STP -- Chapter 5. Geometric Mean and Matrix Quadratic Equations -- Chapter 6. Yang-Baxter-like Matrix Equation: A Road Less Taken -- Chapter 7. Hermitian Polynomial Matrix Equations and Applications -- Chapter 8. Inequalities for Matrix Exponentials and Their Extensions to Lie Groups -- Chapter 9. Numerical Ranges of Operators and Matrices -- Part II Operator Equations -- Chapter 10. Stability and Controllability of Operator Differential Equations -- Chapter 11. On Singular Integral Operators with Shifts -- Chapter 12. Berezin number and norm inequalities for operators in Hilbert and semi-Hilbert spaces -- Chapter 13. Norm Equalities for Derivations -- Chapter 14. On Semicircular Elements Induced by Connected Finite Graphs -- Chapter 15. Hilbert C*-module for analyzing structured data -- Chapter 16. Iterative Processes and Integral Equations of the Second Kind -- Chapter 17. The Daugavet equation: linear and non-linear recent results.
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades. The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations. In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed. In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed. The chapters give a comprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
ISBN: 9783031253867
Standard No.: 10.1007/978-3-031-25386-7doiSubjects--Topical Terms:
516894
Matrices.
LC Class. No.: QA188
Dewey Class. No.: 512.9434
Matrix and operator equations and applications
LDR
:04582nmm a2200337 a 4500
001
2333234
003
DE-He213
005
20230729222528.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031253867
$q
(electronic bk.)
020
$a
9783031253850
$q
(paper)
024
7
$a
10.1007/978-3-031-25386-7
$2
doi
035
$a
978-3-031-25386-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA188
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
512.9434
$2
23
090
$a
QA188
$b
.M433 2023
245
0 0
$a
Matrix and operator equations and applications
$h
[electronic resource] /
$c
edited by Mohammad Sal Moslehian.
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2023.
300
$a
x, 765 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Mathematics online first collections,
$x
2730-6348
505
0
$a
Preface -- Part I Matrix Equations -- Chapter 1. Existence and Representations of Solutions to Some Constrained Systems of Matrix Equations -- Chapter 2. Quaternion Two-Sided Matrix Equations with Specific Constraints -- Chapter 3. Matrices over Quaternion Algebras -- Chapter 4. Direct Methods of solving quaternion matrix equation based on STP -- Chapter 5. Geometric Mean and Matrix Quadratic Equations -- Chapter 6. Yang-Baxter-like Matrix Equation: A Road Less Taken -- Chapter 7. Hermitian Polynomial Matrix Equations and Applications -- Chapter 8. Inequalities for Matrix Exponentials and Their Extensions to Lie Groups -- Chapter 9. Numerical Ranges of Operators and Matrices -- Part II Operator Equations -- Chapter 10. Stability and Controllability of Operator Differential Equations -- Chapter 11. On Singular Integral Operators with Shifts -- Chapter 12. Berezin number and norm inequalities for operators in Hilbert and semi-Hilbert spaces -- Chapter 13. Norm Equalities for Derivations -- Chapter 14. On Semicircular Elements Induced by Connected Finite Graphs -- Chapter 15. Hilbert C*-module for analyzing structured data -- Chapter 16. Iterative Processes and Integral Equations of the Second Kind -- Chapter 17. The Daugavet equation: linear and non-linear recent results.
520
$a
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades. The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations. In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed. In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed. The chapters give a comprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.
650
0
$a
Matrices.
$3
516894
650
0
$a
Operator equations.
$3
723759
650
1 4
$a
Operator Theory.
$3
897311
700
1
$a
Moslehian, Mohammad Sal.
$3
3663832
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Mathematics online first collections.
$3
3501387
856
4 0
$u
https://doi.org/10.1007/978-3-031-25386-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9459439
電子資源
11.線上閱覽_V
電子書
EB QA188
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入