語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Predictive and simulation analytics ...
~
Paczkowski, Walter R.
FindBook
Google Book
Amazon
博客來
Predictive and simulation analytics = deeper insights for better business decisions /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Predictive and simulation analytics/ by Walter R. Paczkowski.
其他題名:
deeper insights for better business decisions /
作者:
Paczkowski, Walter R.
出版者:
Cham :Springer International Publishing : : 2023.,
面頁冊數:
xxv, 370 p. :ill., digital ;24 cm.
內容註:
Part 1: The Analytics Quest: The Drive for Rich Information -- 1. Decisions, Information, and Data -- 2. A Systems Perspective -- Part 2: Predictive Analytics: Background -- 3. Information Extraction: Basic Time Series Methods -- 4. Information Extraction: Advanced Time Series Methods -- 5. Information Extraction: Non-Time Series Methods -- 6. Useful Life of a Predictive Model -- Part 3: Simulation Analytics: Background -- 7. Introduction to Simulations -- 8. Designing and analyzing a Simulation -- 9. Random Numbers: The Backbone of Stochastic Simulations -- 10. Examples of Stochastic Simulations: Monte Carlo Simulations -- Part 4: Melding The Two Analytics -- 11. Melding Predictive and Simulation Analytics -- 12. Applications: Operational Scale-View -- 13. Applications: Tactical and Strategic Scale-Views.
Contained By:
Springer Nature eBook
標題:
Decision making - Mathematical models. -
電子資源:
https://doi.org/10.1007/978-3-031-31887-0
ISBN:
9783031318870
Predictive and simulation analytics = deeper insights for better business decisions /
Paczkowski, Walter R.
Predictive and simulation analytics
deeper insights for better business decisions /[electronic resource] :by Walter R. Paczkowski. - Cham :Springer International Publishing :2023. - xxv, 370 p. :ill., digital ;24 cm.
Part 1: The Analytics Quest: The Drive for Rich Information -- 1. Decisions, Information, and Data -- 2. A Systems Perspective -- Part 2: Predictive Analytics: Background -- 3. Information Extraction: Basic Time Series Methods -- 4. Information Extraction: Advanced Time Series Methods -- 5. Information Extraction: Non-Time Series Methods -- 6. Useful Life of a Predictive Model -- Part 3: Simulation Analytics: Background -- 7. Introduction to Simulations -- 8. Designing and analyzing a Simulation -- 9. Random Numbers: The Backbone of Stochastic Simulations -- 10. Examples of Stochastic Simulations: Monte Carlo Simulations -- Part 4: Melding The Two Analytics -- 11. Melding Predictive and Simulation Analytics -- 12. Applications: Operational Scale-View -- 13. Applications: Tactical and Strategic Scale-Views.
This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github. This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
ISBN: 9783031318870
Standard No.: 10.1007/978-3-031-31887-0doiSubjects--Topical Terms:
565918
Decision making
--Mathematical models.
LC Class. No.: HD30.23 / .P33 2023
Dewey Class. No.: 658.4033
Predictive and simulation analytics = deeper insights for better business decisions /
LDR
:02784nmm a2200349 a 4500
001
2333220
003
DE-He213
005
20230718212506.0
006
m d
007
cr nn 008maaau
008
240402s2023 sz s 0 eng d
020
$a
9783031318870
$q
(electronic bk.)
020
$a
9783031318863
$q
(paper)
024
7
$a
10.1007/978-3-031-31887-0
$2
doi
035
$a
978-3-031-31887-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HD30.23
$b
.P33 2023
072
7
$a
PBT
$2
bicssc
072
7
$a
K
$2
bicssc
072
7
$a
BUS061000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
658.4033
$2
23
090
$a
HD30.23
$b
.P122 2023
100
1
$a
Paczkowski, Walter R.
$3
3511009
245
1 0
$a
Predictive and simulation analytics
$h
[electronic resource] :
$b
deeper insights for better business decisions /
$c
by Walter R. Paczkowski.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xxv, 370 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part 1: The Analytics Quest: The Drive for Rich Information -- 1. Decisions, Information, and Data -- 2. A Systems Perspective -- Part 2: Predictive Analytics: Background -- 3. Information Extraction: Basic Time Series Methods -- 4. Information Extraction: Advanced Time Series Methods -- 5. Information Extraction: Non-Time Series Methods -- 6. Useful Life of a Predictive Model -- Part 3: Simulation Analytics: Background -- 7. Introduction to Simulations -- 8. Designing and analyzing a Simulation -- 9. Random Numbers: The Backbone of Stochastic Simulations -- 10. Examples of Stochastic Simulations: Monte Carlo Simulations -- Part 4: Melding The Two Analytics -- 11. Melding Predictive and Simulation Analytics -- 12. Applications: Operational Scale-View -- 13. Applications: Tactical and Strategic Scale-Views.
520
$a
This book connects predictive analytics and simulation analytics, with the end goal of providing Rich Information to stakeholders in complex systems to direct data-driven decisions. Readers will explore methods for extracting information from data, work with simple and complex systems, and meld multiple forms of analytics for a more nuanced understanding of data science. The methods can be readily applied to business problems such as demand measurement and forecasting, predictive modeling, pricing analytics including elasticity estimation, customer satisfaction assessment, market research, new product development, and more. The book includes Python examples in Jupyter notebooks, available at the book's affiliated Github. This volume is intended for current and aspiring business data analysts, data scientists, and market research professionals, in both the private and public sectors.
650
0
$a
Decision making
$x
Mathematical models.
$3
565918
650
0
$a
Industrial management
$x
Statistical methods.
$3
535531
650
0
$a
Industrial management
$x
Data processing.
$3
647371
650
1 4
$a
Statistics in Business, Management, Economics, Finance, Insurance.
$3
3538572
650
2 4
$a
Business Analytics.
$3
3592362
650
2 4
$a
Business Informatics.
$3
3591755
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-31887-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9459425
電子資源
11.線上閱覽_V
電子書
EB HD30.23 .P33 2023
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入