Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
p-adic differential equations
~
Kedlaya, Kiran S.
Linked to FindBook
Google Book
Amazon
博客來
p-adic differential equations
Record Type:
Electronic resources : Monograph/item
Title/Author:
p-adic differential equations/ Kiran S. Kedlaya, University of California San Diego.
Author:
Kedlaya, Kiran S.
Published:
Cambridge, United Kingdom ; New York, NY :Cambridge University Press, : 2022.,
Description:
xx, 496 p. :ill., digital ;23 cm.
Notes:
Title from publisher's bibliographic system (viewed on 08 Aug 2022).
Subject:
p-adic analysis. -
Online resource:
https://doi.org/10.1017/9781009127684
ISBN:
9781009127684
p-adic differential equations
Kedlaya, Kiran S.
p-adic differential equations
[electronic resource] /Kiran S. Kedlaya, University of California San Diego. - Second edition. - Cambridge, United Kingdom ; New York, NY :Cambridge University Press,2022. - xx, 496 p. :ill., digital ;23 cm. - Cambridge studies in advanced mathematics ;198. - Cambridge studies in advanced mathematics ;198..
Title from publisher's bibliographic system (viewed on 08 Aug 2022).
Now in its second edition, this volume provides a uniquely detailed study of $P$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $P$-adic geometry, crystalline cohomology, $P$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $P$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.
ISBN: 9781009127684Subjects--Topical Terms:
628821
p-adic analysis.
LC Class. No.: QA241 / .K43 2022
Dewey Class. No.: 512.74
p-adic differential equations
LDR
:01913nmm a2200265 a 4500
001
2324619
003
UkCbUP
005
20220909115745.0
006
m d
007
cr nn 008maaau
008
231215s2022 enk o 1 0 eng d
020
$a
9781009127684
$q
(electronic bk.)
020
$a
9781009123341
$q
(hardback)
035
$a
CR9781009127684
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
050
0 0
$a
QA241
$b
.K43 2022
082
0 0
$a
512.74
$2
23
090
$a
QA241
$b
.K25 2022
100
1
$a
Kedlaya, Kiran S.
$3
3646014
245
1 0
$a
p-adic differential equations
$h
[electronic resource] /
$c
Kiran S. Kedlaya, University of California San Diego.
250
$a
Second edition.
260
$a
Cambridge, United Kingdom ; New York, NY :
$b
Cambridge University Press,
$c
2022.
300
$a
xx, 496 p. :
$b
ill., digital ;
$c
23 cm.
490
1
$a
Cambridge studies in advanced mathematics ;
$v
198
500
$a
Title from publisher's bibliographic system (viewed on 08 Aug 2022).
520
$a
Now in its second edition, this volume provides a uniquely detailed study of $P$-adic differential equations. Assuming only a graduate-level background in number theory, the text builds the theory from first principles all the way to the frontiers of current research, highlighting analogies and links with the classical theory of ordinary differential equations. The author includes many original results which play a key role in the study of $P$-adic geometry, crystalline cohomology, $P$-adic Hodge theory, perfectoid spaces, and algorithms for L-functions of arithmetic varieties. This updated edition contains five new chapters, which revisit the theory of convergence of solutions of $P$-adic differential equations from a more global viewpoint, introducing the Berkovich analytification of the projective line, defining convergence polygons as functions on the projective line, and deriving a global index theorem in terms of the Laplacian of the convergence polygon.
650
0
$a
p-adic analysis.
$3
628821
650
0
$a
Differential equations.
$3
517952
830
0
$a
Cambridge studies in advanced mathematics ;
$v
198.
$3
3645920
856
4 0
$u
https://doi.org/10.1017/9781009127684
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9456566
電子資源
11.線上閱覽_V
電子書
EB QA241 .K43 2022
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login