Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Statistical inference based on kerne...
~
Fauzi, Rizky Reza.
Linked to FindBook
Google Book
Amazon
博客來
Statistical inference based on kernel distribution function estimators
Record Type:
Electronic resources : Monograph/item
Title/Author:
Statistical inference based on kernel distribution function estimators/ by Rizky Reza Fauzi, Yoshihiko Maesono.
Author:
Fauzi, Rizky Reza.
other author:
Maesono, Yoshihiko.
Published:
Singapore :Springer Nature Singapore : : 2023.,
Description:
1 online resource (viii, 96 p.) :ill., digital ;24 cm.
[NT 15003449]:
Kernel density estimator -- Kernel distribution estimator -- Quantile estimation -- Nonparametric tests -- Mean residual life estimator.
Contained By:
Springer Nature eBook
Subject:
Mathematical statistics. -
Online resource:
https://doi.org/10.1007/978-981-99-1862-1
ISBN:
9789819918621
Statistical inference based on kernel distribution function estimators
Fauzi, Rizky Reza.
Statistical inference based on kernel distribution function estimators
[electronic resource] /by Rizky Reza Fauzi, Yoshihiko Maesono. - Singapore :Springer Nature Singapore :2023. - 1 online resource (viii, 96 p.) :ill., digital ;24 cm. - JSS research series in statistics,2364-0065. - JSS research series in statistics..
Kernel density estimator -- Kernel distribution estimator -- Quantile estimation -- Nonparametric tests -- Mean residual life estimator.
This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved-that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.
ISBN: 9789819918621
Standard No.: 10.1007/978-981-99-1862-1doiSubjects--Topical Terms:
516858
Mathematical statistics.
LC Class. No.: QA276
Dewey Class. No.: 519.5
Statistical inference based on kernel distribution function estimators
LDR
:02394nmm a2200337 a 4500
001
2319002
003
DE-He213
005
20230531155706.0
006
m d
007
cr nn 008maaau
008
230902s2023 si s 0 eng d
020
$a
9789819918621
$q
(electronic bk.)
020
$a
9789819918614
$q
(paper)
024
7
$a
10.1007/978-981-99-1862-1
$2
doi
035
$a
978-981-99-1862-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
090
$a
QA276
$b
.F271 2023
100
1
$a
Fauzi, Rizky Reza.
$3
3634550
245
1 0
$a
Statistical inference based on kernel distribution function estimators
$h
[electronic resource] /
$c
by Rizky Reza Fauzi, Yoshihiko Maesono.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2023.
300
$a
1 online resource (viii, 96 p.) :
$b
ill., digital ;
$c
24 cm.
490
1
$a
JSS research series in statistics,
$x
2364-0065
505
0
$a
Kernel density estimator -- Kernel distribution estimator -- Quantile estimation -- Nonparametric tests -- Mean residual life estimator.
520
$a
This book presents a study of statistical inferences based on the kernel-type estimators of distribution functions. The inferences involve matters such as quantile estimation, nonparametric tests, and mean residual life expectation, to name just some. Convergence rates for the kernel estimators of density functions are slower than ordinary parametric estimators, which have root-n consistency. If the appropriate kernel function is used, the kernel estimators of the distribution functions recover the root-n consistency, and the inferences based on kernel distribution estimators have root-n consistency. Further, the kernel-type estimator produces smooth estimation results. The estimators based on the empirical distribution function have discrete distribution, and the normal approximation cannot be improved-that is, the validity of the Edgeworth expansion cannot be proved. If the support of the population density function is bounded, there is a boundary problem, namely the estimator does not have consistency near the boundary. The book also contains a study of the mean squared errors of the estimators and the Edgeworth expansion for quantile estimators.
650
0
$a
Mathematical statistics.
$3
516858
650
0
$a
Kernel functions.
$3
562986
650
1 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Applied Statistics.
$3
3300946
650
2 4
$a
Non-parametric Inference.
$3
3538766
650
2 4
$a
Mathematical Statistics.
$3
3538791
700
1
$a
Maesono, Yoshihiko.
$3
3634551
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
JSS research series in statistics.
$3
3386949
856
4 0
$u
https://doi.org/10.1007/978-981-99-1862-1
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9455252
電子資源
11.線上閱覽_V
電子書
EB QA276
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login