Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
The geometry of spacetime = a mathem...
~
Oloff, Rainer.
Linked to FindBook
Google Book
Amazon
博客來
The geometry of spacetime = a mathematical introduction to relativity theory /
Record Type:
Electronic resources : Monograph/item
Title/Author:
The geometry of spacetime/ by Rainer Oloff.
Reminder of title:
a mathematical introduction to relativity theory /
Author:
Oloff, Rainer.
Published:
Cham :Springer International Publishing : : 2023.,
Description:
xix, 274 p. :ill., digital ;24 cm.
[NT 15003449]:
Differentiable manifolds -- Tangent vectors -- Tensors -- Semi-Riemann manifolds -- Special relativity -- Differential forms -- Covariant derivation of vector fields -- Curvature -- Matter -- Geodesy -- Covariant differentiation of tensor fields -- Lie derivation -- Integration on manifolds -- Non-rotating black holes -- Cosmology -- Rotating black holes -- An overview of string theory.
Contained By:
Springer Nature eBook
Subject:
Relativity (Physics) - Mathematics. -
Online resource:
https://doi.org/10.1007/978-3-031-16139-1
ISBN:
9783031161391
The geometry of spacetime = a mathematical introduction to relativity theory /
Oloff, Rainer.
The geometry of spacetime
a mathematical introduction to relativity theory /[electronic resource] :by Rainer Oloff. - Cham :Springer International Publishing :2023. - xix, 274 p. :ill., digital ;24 cm. - Graduate texts in physics,1868-4521. - Graduate texts in physics..
Differentiable manifolds -- Tangent vectors -- Tensors -- Semi-Riemann manifolds -- Special relativity -- Differential forms -- Covariant derivation of vector fields -- Curvature -- Matter -- Geodesy -- Covariant differentiation of tensor fields -- Lie derivation -- Integration on manifolds -- Non-rotating black holes -- Cosmology -- Rotating black holes -- An overview of string theory.
This book systematically develops the mathematical foundations of the theory of relativity and links them to physical relations. For this purpose, differential geometry on manifolds is introduced first, including differentiation and integration, and special relativity is presented as tensor calculus on tangential spaces. Using Einstein's field equations relating curvature to matter, the relativistic effects in the solar system including black holes are discussed in detail. The text is aimed at students of physics and mathematics and assumes only basic knowledge of classical differential and integral calculus and linear algebra.
ISBN: 9783031161391
Standard No.: 10.1007/978-3-031-16139-1doiSubjects--Topical Terms:
2108932
Relativity (Physics)
--Mathematics.
LC Class. No.: QC173.6 / .O4613 2023
Dewey Class. No.: 530.110151
The geometry of spacetime = a mathematical introduction to relativity theory /
LDR
:02131nmm a2200349 a 4500
001
2318041
003
DE-He213
005
20230421174713.0
006
m d
007
cr nn 008maaau
008
230902s2023 sz s 0 eng d
020
$a
9783031161391
$q
(electronic bk.)
020
$a
9783031161384
$q
(paper)
024
7
$a
10.1007/978-3-031-16139-1
$2
doi
035
$a
978-3-031-16139-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC173.6
$b
.O4613 2023
072
7
$a
PHR
$2
bicssc
072
7
$a
SCI061000
$2
bisacsh
072
7
$a
PHR
$2
thema
082
0 4
$a
530.110151
$2
23
090
$a
QC173.6
$b
.O52 2023
100
1
$a
Oloff, Rainer.
$3
3632691
240
1 0
$a
Geometrie der Raumzeit.
$l
English
245
1 4
$a
The geometry of spacetime
$h
[electronic resource] :
$b
a mathematical introduction to relativity theory /
$c
by Rainer Oloff.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2023.
300
$a
xix, 274 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Graduate texts in physics,
$x
1868-4521
505
0
$a
Differentiable manifolds -- Tangent vectors -- Tensors -- Semi-Riemann manifolds -- Special relativity -- Differential forms -- Covariant derivation of vector fields -- Curvature -- Matter -- Geodesy -- Covariant differentiation of tensor fields -- Lie derivation -- Integration on manifolds -- Non-rotating black holes -- Cosmology -- Rotating black holes -- An overview of string theory.
520
$a
This book systematically develops the mathematical foundations of the theory of relativity and links them to physical relations. For this purpose, differential geometry on manifolds is introduced first, including differentiation and integration, and special relativity is presented as tensor calculus on tangential spaces. Using Einstein's field equations relating curvature to matter, the relativistic effects in the solar system including black holes are discussed in detail. The text is aimed at students of physics and mathematics and assumes only basic knowledge of classical differential and integral calculus and linear algebra.
650
0
$a
Relativity (Physics)
$x
Mathematics.
$3
2108932
650
0
$a
Geometry, Differential.
$3
523835
650
1 4
$a
General Relativity.
$3
3593594
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Cosmology.
$3
531904
650
2 4
$a
Foundations of Physics and Cosmology.
$3
3596641
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Graduate texts in physics.
$x
1868-4513.
$3
1314540
856
4 0
$u
https://doi.org/10.1007/978-3-031-16139-1
950
$a
Physics and Astronomy (SpringerNature-11651)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9454291
電子資源
11.線上閱覽_V
電子書
EB QC173.6 .O4613 2023
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login