Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
IoT and AI in agriculture = self- su...
~
Ahamed, Tofael.
Linked to FindBook
Google Book
Amazon
博客來
IoT and AI in agriculture = self- sufficiency in food production to achieve society 5.0 and SDG's globally /
Record Type:
Electronic resources : Monograph/item
Title/Author:
IoT and AI in agriculture/ edited by Tofael Ahamed.
Reminder of title:
self- sufficiency in food production to achieve society 5.0 and SDG's globally /
other author:
Ahamed, Tofael.
Published:
Singapore :Springer Nature Singapore : : 2023.,
Description:
xvii, 461 p. :ill., digital ;24 cm.
[NT 15003449]:
Chapter 1. IoT x AI: Introducing Agricultural Innovation for Global Food Production -- Chapter 2. Transforming Controlled Environment Plant Production toward Circular Bioeconomy Systems -- Chapter 3. Artificial Lighting Systems for Plant Growth and Development in Indoor Farming -- Chapter 4. An IoT-based Precision Irrigation System to Optimize Plant Water Requirements for Indoor and Outdoor Farming Systems -- Chapter 5. Artificial Intelligence & Internet of Things: Application in Urban Water Management -- Chapter 6.Purification of Agricultural Polluted Water Using Solar Distillation and Hot Water Producing with Continuous Monitoring Based on IoT -- Chapter 7. Long Range Wide Area Network (LoRaWAN) for Oil Palm Soil Monitoring -- Chapter 8. Application of Smart Machine Vision in Agriculture, Forestry, Fishery, and Animal Husbandry -- Chapter 9. Artificial Intelligence in Agriculture: Commitment to Establish Society 5.0 -- Chapter 10. Potentials of Deep Learning Frameworks for Tree Trunk Detection in Orchard to Enable Autonomous Navigation System -- Chapter 11. Real Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT -- Chapter 12. Pear Recognition in an Orchard from 3D Stereo Camera Datasets to Develop an Autonomous Mechanism Compared with Deep Learning Algorithms -- Chapter 13. Thermal Imaging and Deep Learning Object Detection Algorithms for Early Embryo Detection - A Methodology Development Addressed to Quail Precision Hatching -- Chapter 14. Intelligent Sensing and Robotic Picking of Kiwifruit in Orchard -- Chapter 15. Low-cost Automatic Machinery Development to Increase Timeliness and Efficiency of Operation for Small Scale Farmers to Achieve SDGs -- Chapter 16. Vision-based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles -- Chapter 17. Autonomous Robots in Orchard Management: Present status and future trends -- Chapter 18. Comparing Soil Moisture Retrieval from Water Cloud Model and Neural Network Using PALSAR-2 for Oil Palm Estates -- Chapter 19. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach -- Chapter 20. Basal Stem Rot Disease Classification by Machine Learning Using Thermal Images and an Imbalanced Data Approach -- Chapter 21. Early Detection of Plant Disease Infection using Hyperspectral Data and Machine Learning -- Chapter 22. The Spectrum of Autonomous Machinery Development to Increase Agricultural Productivity for Achieving Society 5.0 in Japan.
Contained By:
Springer Nature eBook
Subject:
Agricultural innovations. -
Online resource:
https://doi.org/10.1007/978-981-19-8113-5
ISBN:
9789811981135
IoT and AI in agriculture = self- sufficiency in food production to achieve society 5.0 and SDG's globally /
IoT and AI in agriculture
self- sufficiency in food production to achieve society 5.0 and SDG's globally /[electronic resource] :edited by Tofael Ahamed. - Singapore :Springer Nature Singapore :2023. - xvii, 461 p. :ill., digital ;24 cm.
Chapter 1. IoT x AI: Introducing Agricultural Innovation for Global Food Production -- Chapter 2. Transforming Controlled Environment Plant Production toward Circular Bioeconomy Systems -- Chapter 3. Artificial Lighting Systems for Plant Growth and Development in Indoor Farming -- Chapter 4. An IoT-based Precision Irrigation System to Optimize Plant Water Requirements for Indoor and Outdoor Farming Systems -- Chapter 5. Artificial Intelligence & Internet of Things: Application in Urban Water Management -- Chapter 6.Purification of Agricultural Polluted Water Using Solar Distillation and Hot Water Producing with Continuous Monitoring Based on IoT -- Chapter 7. Long Range Wide Area Network (LoRaWAN) for Oil Palm Soil Monitoring -- Chapter 8. Application of Smart Machine Vision in Agriculture, Forestry, Fishery, and Animal Husbandry -- Chapter 9. Artificial Intelligence in Agriculture: Commitment to Establish Society 5.0 -- Chapter 10. Potentials of Deep Learning Frameworks for Tree Trunk Detection in Orchard to Enable Autonomous Navigation System -- Chapter 11. Real Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT -- Chapter 12. Pear Recognition in an Orchard from 3D Stereo Camera Datasets to Develop an Autonomous Mechanism Compared with Deep Learning Algorithms -- Chapter 13. Thermal Imaging and Deep Learning Object Detection Algorithms for Early Embryo Detection - A Methodology Development Addressed to Quail Precision Hatching -- Chapter 14. Intelligent Sensing and Robotic Picking of Kiwifruit in Orchard -- Chapter 15. Low-cost Automatic Machinery Development to Increase Timeliness and Efficiency of Operation for Small Scale Farmers to Achieve SDGs -- Chapter 16. Vision-based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles -- Chapter 17. Autonomous Robots in Orchard Management: Present status and future trends -- Chapter 18. Comparing Soil Moisture Retrieval from Water Cloud Model and Neural Network Using PALSAR-2 for Oil Palm Estates -- Chapter 19. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach -- Chapter 20. Basal Stem Rot Disease Classification by Machine Learning Using Thermal Images and an Imbalanced Data Approach -- Chapter 21. Early Detection of Plant Disease Infection using Hyperspectral Data and Machine Learning -- Chapter 22. The Spectrum of Autonomous Machinery Development to Increase Agricultural Productivity for Achieving Society 5.0 in Japan.
This book reviews recent innovations in the smart agriculture space that use the Internet of Things (IoT) and sensing to deliver Artificial Intelligence (AI) solutionsto agricultural productivity in the agricultural production hubs. In this regard, South and Southeast Asia are one of the major agricultural hubs of the world, facing challenges of climate change and feeding the fast-growing population. To addresssuch challenges, a transboundary approach along with AI and BIG data for bioinformatics are required to increase yield and minimize pre- and post-harvest losses in intangible climates to drive the sustainable development goal (SDG) for feeding a major part of the 9 billion population by 2050 (Society 5.0 SDG 1 & 2) Therefore, this book focuses on the solution through smart IoT and AI-based agriculture including pest infestation and minimizing agricultural inputs for in-house and fields production such as light, water, fertilizer and pesticides to ensure food security aligns with environmental sustainability. It provides a sound understanding for creating new knowledge in line with comprehensive research and education orientation on how the deployment of tiny sensors, AI/Machine Learning (ML), controlled UAVs, and IoT setups for sensing, tracking, collection, processing, and storing information over cloud platforms for nurturing and driving the pace of smart agriculture in this current time. The book will appeal to several audiences and the contents are designed for researchers, graduates, and undergraduate students working in any area of machine learning, deep learning in agricultural engineering, smart agriculture, and environmental science disciplines. Utmost care has been taken to present a varied range of resource areas along with immense insights into the impact and scope of IoT, AI and ML in the growth of intelligent digital farming and smart agriculture which will give comprehensive information to the targeted readers.
ISBN: 9789811981135
Standard No.: 10.1007/978-981-19-8113-5doiSubjects--Topical Terms:
570532
Agricultural innovations.
LC Class. No.: S494.5.I5 / I68 2023
Dewey Class. No.: 630.20854678
IoT and AI in agriculture = self- sufficiency in food production to achieve society 5.0 and SDG's globally /
LDR
:05538nmm a2200325 a 4500
001
2316725
003
DE-He213
005
20230410160316.0
006
m d
007
cr nn 008maaau
008
230902s2023 si s 0 eng d
020
$a
9789811981135
$q
(electronic bk.)
020
$a
9789811981128
$q
(paper)
024
7
$a
10.1007/978-981-19-8113-5
$2
doi
035
$a
978-981-19-8113-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
S494.5.I5
$b
I68 2023
072
7
$a
TVB
$2
bicssc
072
7
$a
TEC003000
$2
bisacsh
072
7
$a
TVB
$2
thema
082
0 4
$a
630.20854678
$2
23
090
$a
S494.5.I5
$b
I64 2023
245
0 0
$a
IoT and AI in agriculture
$h
[electronic resource] :
$b
self- sufficiency in food production to achieve society 5.0 and SDG's globally /
$c
edited by Tofael Ahamed.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2023.
300
$a
xvii, 461 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1. IoT x AI: Introducing Agricultural Innovation for Global Food Production -- Chapter 2. Transforming Controlled Environment Plant Production toward Circular Bioeconomy Systems -- Chapter 3. Artificial Lighting Systems for Plant Growth and Development in Indoor Farming -- Chapter 4. An IoT-based Precision Irrigation System to Optimize Plant Water Requirements for Indoor and Outdoor Farming Systems -- Chapter 5. Artificial Intelligence & Internet of Things: Application in Urban Water Management -- Chapter 6.Purification of Agricultural Polluted Water Using Solar Distillation and Hot Water Producing with Continuous Monitoring Based on IoT -- Chapter 7. Long Range Wide Area Network (LoRaWAN) for Oil Palm Soil Monitoring -- Chapter 8. Application of Smart Machine Vision in Agriculture, Forestry, Fishery, and Animal Husbandry -- Chapter 9. Artificial Intelligence in Agriculture: Commitment to Establish Society 5.0 -- Chapter 10. Potentials of Deep Learning Frameworks for Tree Trunk Detection in Orchard to Enable Autonomous Navigation System -- Chapter 11. Real Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT -- Chapter 12. Pear Recognition in an Orchard from 3D Stereo Camera Datasets to Develop an Autonomous Mechanism Compared with Deep Learning Algorithms -- Chapter 13. Thermal Imaging and Deep Learning Object Detection Algorithms for Early Embryo Detection - A Methodology Development Addressed to Quail Precision Hatching -- Chapter 14. Intelligent Sensing and Robotic Picking of Kiwifruit in Orchard -- Chapter 15. Low-cost Automatic Machinery Development to Increase Timeliness and Efficiency of Operation for Small Scale Farmers to Achieve SDGs -- Chapter 16. Vision-based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles -- Chapter 17. Autonomous Robots in Orchard Management: Present status and future trends -- Chapter 18. Comparing Soil Moisture Retrieval from Water Cloud Model and Neural Network Using PALSAR-2 for Oil Palm Estates -- Chapter 19. Development of a Recognition System for Spraying Areas from Unmanned Aerial Vehicles Using a Machine Learning Approach -- Chapter 20. Basal Stem Rot Disease Classification by Machine Learning Using Thermal Images and an Imbalanced Data Approach -- Chapter 21. Early Detection of Plant Disease Infection using Hyperspectral Data and Machine Learning -- Chapter 22. The Spectrum of Autonomous Machinery Development to Increase Agricultural Productivity for Achieving Society 5.0 in Japan.
520
$a
This book reviews recent innovations in the smart agriculture space that use the Internet of Things (IoT) and sensing to deliver Artificial Intelligence (AI) solutionsto agricultural productivity in the agricultural production hubs. In this regard, South and Southeast Asia are one of the major agricultural hubs of the world, facing challenges of climate change and feeding the fast-growing population. To addresssuch challenges, a transboundary approach along with AI and BIG data for bioinformatics are required to increase yield and minimize pre- and post-harvest losses in intangible climates to drive the sustainable development goal (SDG) for feeding a major part of the 9 billion population by 2050 (Society 5.0 SDG 1 & 2) Therefore, this book focuses on the solution through smart IoT and AI-based agriculture including pest infestation and minimizing agricultural inputs for in-house and fields production such as light, water, fertilizer and pesticides to ensure food security aligns with environmental sustainability. It provides a sound understanding for creating new knowledge in line with comprehensive research and education orientation on how the deployment of tiny sensors, AI/Machine Learning (ML), controlled UAVs, and IoT setups for sensing, tracking, collection, processing, and storing information over cloud platforms for nurturing and driving the pace of smart agriculture in this current time. The book will appeal to several audiences and the contents are designed for researchers, graduates, and undergraduate students working in any area of machine learning, deep learning in agricultural engineering, smart agriculture, and environmental science disciplines. Utmost care has been taken to present a varied range of resource areas along with immense insights into the impact and scope of IoT, AI and ML in the growth of intelligent digital farming and smart agriculture which will give comprehensive information to the targeted readers.
650
0
$a
Agricultural innovations.
$3
570532
650
0
$a
Internet of things
$x
Industrial applications.
$3
3452515
650
0
$a
Artificial intelligence
$x
Agricultural applications.
$3
3299845
650
1 4
$a
Agriculture.
$3
518588
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Sustainability.
$3
1029978
700
1
$a
Ahamed, Tofael.
$3
3598261
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-19-8113-5
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9452975
電子資源
11.線上閱覽_V
電子書
EB S494.5.I5 I68 2023
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login