Thinking data science = a data scien...
Sarang, P. G.

Linked to FindBook      Google Book      Amazon      博客來     
  • Thinking data science = a data science practitioner's guide /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Thinking data science/ by Poornachandra Sarang.
    Reminder of title: a data science practitioner's guide /
    Author: Sarang, P. G.
    Published: Cham :Springer International Publishing : : 2023.,
    Description: xx, 358 p. :ill., digital ;24 cm.
    [NT 15003449]: Chapter. 1. Data Science Process -- Chapter. 2. Dimensionality Reduction - Creating Manageable Training Datasets -- Chapter. 3. Classical Algorithms - Over-view -- Chapter. 4. Regression Analysis -- Chapter. 5. Decision Tree -- Chapter. 6. Ensemble - Bagging and Boosting -- Chapter. 7. K-Nearest Neighbors -- Chapter. 8. Naive Bayes -- Chapter. 9. Support Vector Machines: A supervised learning algorithm for Classification and Regression -- Chapter. 10. Clustering Overview -- Chapter. 11. Centroid-based Clustering -- Chapter. 12. Connectivity-based Clustering -- Chapter. 13. Gaussian Mixture Model -- Chapter. 14. Density-based -- Chapter. 15 -- BIRCH -- Chapter. 16. CLARANS -- Chapter. 17. Affinity Propagation Clustering -- Chapter. 18. STING -- Chapter. 19. CLIQUE -- Chapter. 20. Artificial Neural Networks -- Chapter. 21. ANN-based Applications -- Chapter. 22. Automated Tools -- Chapter. 23. Data Scientist's Ultimate Workflow.
    Contained By: Springer Nature eBook
    Subject: Machine learning. -
    Online resource: https://doi.org/10.1007/978-3-031-02363-7
    ISBN: 9783031023637
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9452518 電子資源 11.線上閱覽_V 電子書 EB Q325.5 .S27 2023 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login