語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Medical applications with disentangl...
~
MICCAI Workshop on Medical Applications with Disentanglements (2022 :)
FindBook
Google Book
Amazon
博客來
Medical applications with disentanglements = first MICCAI Workshop, MAD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022 : proceedings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Medical applications with disentanglements/ edited by Jana Fragemann ... [et al.].
其他題名:
first MICCAI Workshop, MAD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022 : proceedings /
其他題名:
MAD 2022
其他作者:
Fragemann, Jana.
團體作者:
MICCAI Workshop on Medical Applications with Disentanglements
出版者:
Cham :Springer Nature Switzerland : : 2023.,
面頁冊數:
x, 127 p. :ill. (some col.), digital ;24 cm.
內容註:
Applying Disentanglement in the Medical Domain: An Introduction -- HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information -- Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs -- Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations -- Instance-Specific Augmentation of Brain MRIs with Variational Autoencoder -- Low-rank and Sparse Metamorphic Autoencoders for Unsupervised Pathology Disentanglement -- Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder -- Disentangling Factors of Morpholigical Variation in an Invertible Brain Aging Model -- A study of representational properties of unsupervised anomaly detection in brain MRI.
Contained By:
Springer Nature eBook
標題:
Imaging systems in medicine - Congresses. -
電子資源:
https://doi.org/10.1007/978-3-031-25046-0
ISBN:
9783031250460
Medical applications with disentanglements = first MICCAI Workshop, MAD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022 : proceedings /
Medical applications with disentanglements
first MICCAI Workshop, MAD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022 : proceedings /[electronic resource] :MAD 2022edited by Jana Fragemann ... [et al.]. - Cham :Springer Nature Switzerland :2023. - x, 127 p. :ill. (some col.), digital ;24 cm. - Lecture notes in computer science,138231611-3349 ;. - Lecture notes in computer science ;13823..
Applying Disentanglement in the Medical Domain: An Introduction -- HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information -- Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs -- Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations -- Instance-Specific Augmentation of Brain MRIs with Variational Autoencoder -- Low-rank and Sparse Metamorphic Autoencoders for Unsupervised Pathology Disentanglement -- Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder -- Disentangling Factors of Morpholigical Variation in an Invertible Brain Aging Model -- A study of representational properties of unsupervised anomaly detection in brain MRI.
This book constitutes the post-conference proceedings of the First MICCAI Workshop on Medical Applications with Disentanglements, MAD 2022, held in conjunction with MICCAI 2022, in Singapore, on September22, 2022. The 8 full papers presented in this book together with one short paper were carefully reviewed and cover generative adversarial networks (GAN), variational autoencoders (VAE) and normalizing-flow architectures as well as a wide range of medical applications, like brain age prediction, skull reconstruction and unsupervised pathology disentanglement.
ISBN: 9783031250460
Standard No.: 10.1007/978-3-031-25046-0doiSubjects--Topical Terms:
708689
Imaging systems in medicine
--Congresses.
LC Class. No.: R857.O6
Dewey Class. No.: 616.0754
Medical applications with disentanglements = first MICCAI Workshop, MAD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022 : proceedings /
LDR
:02563nmm a2200361 a 4500
001
2315667
003
DE-He213
005
20230131185006.0
006
m d
007
cr nn 008maaau
008
230902s2023 sz s 0 eng d
020
$a
9783031250460
$q
(electronic bk.)
020
$a
9783031250453
$q
(paper)
024
7
$a
10.1007/978-3-031-25046-0
$2
doi
035
$a
978-3-031-25046-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
R857.O6
072
7
$a
UYT
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
072
7
$a
UYT
$2
thema
082
0 4
$a
616.0754
$2
23
090
$a
R857.O6
$b
M619 2022
111
2
$a
MICCAI Workshop on Medical Applications with Disentanglements
$n
(1st :
$d
2022 :
$c
Singapore)
$3
3628210
245
1 0
$a
Medical applications with disentanglements
$h
[electronic resource] :
$b
first MICCAI Workshop, MAD 2022, held in conjunction with MICCAI 2022, Singapore, September 22, 2022 : proceedings /
$c
edited by Jana Fragemann ... [et al.].
246
3
$a
MAD 2022
246
3
$a
MICCAI 2022
260
$a
Cham :
$b
Springer Nature Switzerland :
$b
Imprint: Springer,
$c
2023.
300
$a
x, 127 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Lecture notes in computer science,
$x
1611-3349 ;
$v
13823
505
0
$a
Applying Disentanglement in the Medical Domain: An Introduction -- HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual Information -- Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs -- Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations -- Instance-Specific Augmentation of Brain MRIs with Variational Autoencoder -- Low-rank and Sparse Metamorphic Autoencoders for Unsupervised Pathology Disentanglement -- Training β-VAE by Aggregating a Learned Gaussian Posterior with a Decoupled Decoder -- Disentangling Factors of Morpholigical Variation in an Invertible Brain Aging Model -- A study of representational properties of unsupervised anomaly detection in brain MRI.
520
$a
This book constitutes the post-conference proceedings of the First MICCAI Workshop on Medical Applications with Disentanglements, MAD 2022, held in conjunction with MICCAI 2022, in Singapore, on September22, 2022. The 8 full papers presented in this book together with one short paper were carefully reviewed and cover generative adversarial networks (GAN), variational autoencoders (VAE) and normalizing-flow architectures as well as a wide range of medical applications, like brain age prediction, skull reconstruction and unsupervised pathology disentanglement.
650
0
$a
Imaging systems in medicine
$x
Congresses.
$3
708689
650
0
$a
Diagnostic imaging
$v
Congresses.
$3
879904
650
1 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
890871
650
2 4
$a
Computer Vision.
$3
3538524
650
2 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Computer Engineering and Networks.
$3
3538504
650
2 4
$a
Computing Milieux.
$3
893243
650
2 4
$a
Computer and Information Systems Applications.
$3
3538505
700
1
$a
Fragemann, Jana.
$3
3628211
710
2
$a
SpringerLink (Online service)
$3
836513
711
2
$a
International Conference on Medical Image Computing and Computer-Assisted Intervention
$d
(2022 :
$c
Singapore)
$3
3613996
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computer science ;
$v
13823.
$3
3628212
856
4 0
$u
https://doi.org/10.1007/978-3-031-25046-0
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9451917
電子資源
11.線上閱覽_V
電子書
EB R857.O6
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入