Estimating ore grade using evolution...
SpringerLink (Online service)

FindBook      Google Book      Amazon      博客來     
  • Estimating ore grade using evolutionary machine learning models
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Estimating ore grade using evolutionary machine learning models/ by Mohammad Ehteram ... [et al.].
    其他作者: Ehteram, Mohammad.
    出版者: Singapore :Springer Nature Singapore : : 2023.,
    面頁冊數: xiii, 101 p. :ill., digital ;24 cm.
    內容註: Explains the importance of ore grade estimation -- Reviews machine learning models for ore grade estimation -- Explains the structure of different kinds of machine learning models -- Explains different training algorithms and optimization algorithms. This chapter also explains the structure of evolutionary machine learning models -- Explains the Bayesian model averaging and multilayer perceptron networks for estimating AL2O3 grade in a mine -- Explains the structure of inclusive multiple models and optimized radial basis function neural networks for estimating Sio2 grade in a mine -- Explains the application of hybrid kriging and extreme learning machine models for estimating copper ore grade in a mine -- Explains the application of optimized group machine data handling, support vector machines, and Adaptive neuro-fuzzy interface systems for estimating iron ore grade in mines -- Presents the conclusion, general comments, and suggestions for the next books.
    Contained By: Springer Nature eBook
    標題: Ores - Sampling and estimation -
    電子資源: https://doi.org/10.1007/978-981-19-8106-7
    ISBN: 9789811981067
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入