語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Elementary modular Iwasawa theory
~
Hida, Haruzo.
FindBook
Google Book
Amazon
博客來
Elementary modular Iwasawa theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Elementary modular Iwasawa theory/ Haruzo Hida.
作者:
Hida, Haruzo.
出版者:
Singapore :World Scientific, : c2022.,
面頁冊數:
1 online resource (448 p.)
內容註:
Cyclotomic Iwasawa theory -- Cuspidal Iwasawa theory -- Cohomological modular forms and p-adic L-functions -- p-adic families of modular forms -- Abelian deformation -- Universal ring and compatible system -- Cyclicity of adjoint Selmer groups -- Local indecomposability of modular Galois representation -- Analytic and topological methods.
標題:
Iwasawa theory. -
電子資源:
https://www.worldscientific.com/worldscibooks/10.1142/12398#t=toc
ISBN:
9789811241376
Elementary modular Iwasawa theory
Hida, Haruzo.
Elementary modular Iwasawa theory
[electronic resource] /Haruzo Hida. - Singapore :World Scientific,c2022. - 1 online resource (448 p.) - Series on number theory and its applications ;vol. 16. - Series on number theory and its applications ;vol. 16..
Includes bibliographical references and index.
Cyclotomic Iwasawa theory -- Cuspidal Iwasawa theory -- Cohomological modular forms and p-adic L-functions -- p-adic families of modular forms -- Abelian deformation -- Universal ring and compatible system -- Cyclicity of adjoint Selmer groups -- Local indecomposability of modular Galois representation -- Analytic and topological methods.
"This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry. Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation. The fundamentals in the first five chapters are as follows: Iwasawa's proof; a modular version of Iwasawa's discovery by Kubert-Lang as an introduction to modular forms; a level-headed description of the p-adic interpolation of modular forms and p-adic L-functions, which are developed into a modular deformation theory; Galois deformation theory of the abelian case. The continuing chapters provide the level of exposition accessible to graduate students, while the results are the latest"--
Mode of access: World Wide Web.
ISBN: 9789811241376Subjects--Topical Terms:
811486
Iwasawa theory.
LC Class. No.: QA247.3 / .H53 2022
Dewey Class. No.: 512.7/4
Elementary modular Iwasawa theory
LDR
:02691cmm a2200325 a 4500
001
2311411
003
WSP
005
20211105114740.0
006
m o d
007
cr cnu---unuuu
008
230722s2022 si ob 001 0 eng d
020
$a
9789811241376
$q
(ebook)
020
$a
9811241376
$q
(ebook)
020
$z
9789811241369
$q
(hbk.)
020
$z
9811241368
$q
(hbk.)
035
$a
00012398
040
$a
WSPC
$b
eng
$c
WSPC
041
0
$a
eng
050
4
$a
QA247.3
$b
.H53 2022
082
0 4
$a
512.7/4
$2
23
100
1
$a
Hida, Haruzo.
$3
737932
245
1 0
$a
Elementary modular Iwasawa theory
$h
[electronic resource] /
$c
Haruzo Hida.
260
$a
Singapore :
$b
World Scientific,
$c
c2022.
300
$a
1 online resource (448 p.)
490
1
$a
Series on number theory and its applications ;
$v
vol. 16
504
$a
Includes bibliographical references and index.
505
0
$a
Cyclotomic Iwasawa theory -- Cuspidal Iwasawa theory -- Cohomological modular forms and p-adic L-functions -- p-adic families of modular forms -- Abelian deformation -- Universal ring and compatible system -- Cyclicity of adjoint Selmer groups -- Local indecomposability of modular Galois representation -- Analytic and topological methods.
520
$a
"This book is the first to provide a comprehensive and elementary account of the new Iwasawa theory innovated via the deformation theory of modular forms and Galois representations. The deformation theory of modular forms is developed by generalizing the cohomological approach discovered in the author's 2019 AMS Leroy P Steele Prize-winning article without using much algebraic geometry. Starting with a description of Iwasawa's classical results on his proof of the main conjecture under the Kummer-Vandiver conjecture (which proves cyclicity of his Iwasawa module more than just proving his main conjecture), we describe a generalization of the method proving cyclicity to the adjoint Selmer group of every ordinary deformation of a two-dimensional Artin Galois representation. The fundamentals in the first five chapters are as follows: Iwasawa's proof; a modular version of Iwasawa's discovery by Kubert-Lang as an introduction to modular forms; a level-headed description of the p-adic interpolation of modular forms and p-adic L-functions, which are developed into a modular deformation theory; Galois deformation theory of the abelian case. The continuing chapters provide the level of exposition accessible to graduate students, while the results are the latest"--
$c
Publisher's website.
538
$a
Mode of access: World Wide Web.
538
$a
System requirements: Adobe Acrobat Reader.
588
$a
Description based on print version record.
650
0
$a
Iwasawa theory.
$3
811486
650
0
$a
Galois theory.
$3
523821
650
0
$a
Modules (Algebra)
$3
594721
830
0
$a
Series on number theory and its applications ;
$v
vol. 16.
$3
3620957
856
4 0
$u
https://www.worldscientific.com/worldscibooks/10.1142/12398#t=toc
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9450025
電子資源
11.線上閱覽_V
電子書
EB QA247.3 .H53 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入