Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Python for probability, statistics, ...
~
Unpingco, Jose.
Linked to FindBook
Google Book
Amazon
博客來
Python for probability, statistics, and machine learning
Record Type:
Electronic resources : Monograph/item
Title/Author:
Python for probability, statistics, and machine learning/ by Jose Unpingco.
Author:
Unpingco, Jose.
Published:
Cham :Springer International Publishing : : 2022.,
Description:
xvii, 509 p. :ill., digital ;24 cm.
[NT 15003449]:
Introduction -- Part 1 Getting Started with Scientific Python -- Installation and Setup -- Numpy -- Matplotlib -- Ipython -- Jupyter Notebook -- Scipy -- Pandas -- Sympy -- Interfacing with Compiled Libraries -- Integrated Development Environments -- Quick Guide to Performance and Parallel Programming -- Other Resources -- Part 2 Probability -- Introduction -- Projection Methods -- Conditional Expectation as Projection -- Conditional Expectation and Mean Squared Error -- Worked Examples of Conditional Expectation and Mean Square Error Optimization -- Useful Distributions -- Information Entropy -- Moment Generating Functions -- Monte Carlo Sampling Methods -- Useful Inequalities -- Part 3 Statistics -- Python Modules for Statistics -- Types of Convergence -- Estimation Using Maximum Likelihood -- Hypothesis Testing and P-Values -- Confidence Intervals -- Linear Regression -- Maximum A-Posteriori -- Robust Statistics -- Bootstrapping -- Gauss Markov -- Nonparametric Methods -- Survival Analysis -- Part 4 Machine Learning -- Introduction -- Python Machine Learning Modules -- Theory of Learning -- Decision Trees -- Boosting Trees -- Logistic Regression -- Generalized Linear Models -- Regularization -- Support Vector Machines -- Dimensionality Reduction -- Clustering -- Ensemble Methods -- Deep Learning -- Notation -- References -- Index.
Contained By:
Springer Nature eBook
Subject:
Python (Computer program language) -
Online resource:
https://doi.org/10.1007/978-3-031-04648-3
ISBN:
9783031046483
Python for probability, statistics, and machine learning
Unpingco, Jose.
Python for probability, statistics, and machine learning
[electronic resource] /by Jose Unpingco. - Third edition. - Cham :Springer International Publishing :2022. - xvii, 509 p. :ill., digital ;24 cm.
Introduction -- Part 1 Getting Started with Scientific Python -- Installation and Setup -- Numpy -- Matplotlib -- Ipython -- Jupyter Notebook -- Scipy -- Pandas -- Sympy -- Interfacing with Compiled Libraries -- Integrated Development Environments -- Quick Guide to Performance and Parallel Programming -- Other Resources -- Part 2 Probability -- Introduction -- Projection Methods -- Conditional Expectation as Projection -- Conditional Expectation and Mean Squared Error -- Worked Examples of Conditional Expectation and Mean Square Error Optimization -- Useful Distributions -- Information Entropy -- Moment Generating Functions -- Monte Carlo Sampling Methods -- Useful Inequalities -- Part 3 Statistics -- Python Modules for Statistics -- Types of Convergence -- Estimation Using Maximum Likelihood -- Hypothesis Testing and P-Values -- Confidence Intervals -- Linear Regression -- Maximum A-Posteriori -- Robust Statistics -- Bootstrapping -- Gauss Markov -- Nonparametric Methods -- Survival Analysis -- Part 4 Machine Learning -- Introduction -- Python Machine Learning Modules -- Theory of Learning -- Decision Trees -- Boosting Trees -- Logistic Regression -- Generalized Linear Models -- Regularization -- Support Vector Machines -- Dimensionality Reduction -- Clustering -- Ensemble Methods -- Deep Learning -- Notation -- References -- Index.
ISBN: 9783031046483
Standard No.: 10.1007/978-3-031-04648-3doiSubjects--Topical Terms:
729789
Python (Computer program language)
LC Class. No.: QA76.73.P98 / U56 2022
Dewey Class. No.: 005.133
Python for probability, statistics, and machine learning
LDR
:02360nmm a2200325 a 4500
001
2305778
003
DE-He213
005
20221104110403.0
006
m d
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783031046483
$q
(electronic bk.)
020
$a
9783031046476
$q
(paper)
024
7
$a
10.1007/978-3-031-04648-3
$2
doi
035
$a
978-3-031-04648-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.P98
$b
U56 2022
072
7
$a
TJK
$2
bicssc
072
7
$a
TEC041000
$2
bisacsh
072
7
$a
TJK
$2
thema
082
0 4
$a
005.133
$2
23
090
$a
QA76.73.P98
$b
U58 2022
100
1
$a
Unpingco, Jose.
$3
2055845
245
1 0
$a
Python for probability, statistics, and machine learning
$h
[electronic resource] /
$c
by Jose Unpingco.
250
$a
Third edition.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xvii, 509 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Part 1 Getting Started with Scientific Python -- Installation and Setup -- Numpy -- Matplotlib -- Ipython -- Jupyter Notebook -- Scipy -- Pandas -- Sympy -- Interfacing with Compiled Libraries -- Integrated Development Environments -- Quick Guide to Performance and Parallel Programming -- Other Resources -- Part 2 Probability -- Introduction -- Projection Methods -- Conditional Expectation as Projection -- Conditional Expectation and Mean Squared Error -- Worked Examples of Conditional Expectation and Mean Square Error Optimization -- Useful Distributions -- Information Entropy -- Moment Generating Functions -- Monte Carlo Sampling Methods -- Useful Inequalities -- Part 3 Statistics -- Python Modules for Statistics -- Types of Convergence -- Estimation Using Maximum Likelihood -- Hypothesis Testing and P-Values -- Confidence Intervals -- Linear Regression -- Maximum A-Posteriori -- Robust Statistics -- Bootstrapping -- Gauss Markov -- Nonparametric Methods -- Survival Analysis -- Part 4 Machine Learning -- Introduction -- Python Machine Learning Modules -- Theory of Learning -- Decision Trees -- Boosting Trees -- Logistic Regression -- Generalized Linear Models -- Regularization -- Support Vector Machines -- Dimensionality Reduction -- Clustering -- Ensemble Methods -- Deep Learning -- Notation -- References -- Index.
650
0
$a
Python (Computer program language)
$3
729789
650
0
$a
Probabilities
$x
Data processing.
$3
534352
650
0
$a
Machine learning.
$3
533906
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-04648-3
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9447327
電子資源
11.線上閱覽_V
電子書
EB QA76.73.P98 U56 2022
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login