語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Latent factor analysis for high-dime...
~
Yuan, Ye.
FindBook
Google Book
Amazon
博客來
Latent factor analysis for high-dimensional and sparse matrices = a particle swarm optimization-based approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Latent factor analysis for high-dimensional and sparse matrices/ by Ye Yuan, Xin Luo.
其他題名:
a particle swarm optimization-based approach /
作者:
Yuan, Ye.
其他作者:
Luo, Xin.
出版者:
Singapore :Springer Nature Singapore : : 2022.,
面頁冊數:
viii, 92 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Learning rate-free Latent Factor Analysis via PSO -- Chapter 3. Learning Rate and Regularization Coefficient-free Latent Factor Analysis via PSO -- Chapter 4. Regularization and Momentum Coefficient-free Non-negative Latent Factor Analysis via PSO -- Chapter 5. Advanced Learning rate-free Latent Factor Analysis via P2SO -- Chapter 6. Conclusion and Discussion.
Contained By:
Springer Nature eBook
標題:
Swarm intelligence. -
電子資源:
https://doi.org/10.1007/978-981-19-6703-0
ISBN:
9789811967030
Latent factor analysis for high-dimensional and sparse matrices = a particle swarm optimization-based approach /
Yuan, Ye.
Latent factor analysis for high-dimensional and sparse matrices
a particle swarm optimization-based approach /[electronic resource] :by Ye Yuan, Xin Luo. - Singapore :Springer Nature Singapore :2022. - viii, 92 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5776. - SpringerBriefs in computer science..
Chapter 1. Introduction -- Chapter 2. Learning rate-free Latent Factor Analysis via PSO -- Chapter 3. Learning Rate and Regularization Coefficient-free Latent Factor Analysis via PSO -- Chapter 4. Regularization and Momentum Coefficient-free Non-negative Latent Factor Analysis via PSO -- Chapter 5. Advanced Learning rate-free Latent Factor Analysis via P2SO -- Chapter 6. Conclusion and Discussion.
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
ISBN: 9789811967030
Standard No.: 10.1007/978-981-19-6703-0doiSubjects--Topical Terms:
577800
Swarm intelligence.
LC Class. No.: Q337.3
Dewey Class. No.: 006.3824
Latent factor analysis for high-dimensional and sparse matrices = a particle swarm optimization-based approach /
LDR
:02636nmm a2200337 a 4500
001
2305471
003
DE-He213
005
20221115075139.0
006
m d
007
cr nn 008maaau
008
230409s2022 si s 0 eng d
020
$a
9789811967030
$q
(electronic bk.)
020
$a
9789811967023
$q
(paper)
024
7
$a
10.1007/978-981-19-6703-0
$2
doi
035
$a
978-981-19-6703-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q337.3
072
7
$a
UN
$2
bicssc
072
7
$a
COM031000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
006.3824
$2
23
090
$a
Q337.3
$b
.Y94 2022
100
1
$a
Yuan, Ye.
$3
1057847
245
1 0
$a
Latent factor analysis for high-dimensional and sparse matrices
$h
[electronic resource] :
$b
a particle swarm optimization-based approach /
$c
by Ye Yuan, Xin Luo.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2022.
300
$a
viii, 92 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5776
505
0
$a
Chapter 1. Introduction -- Chapter 2. Learning rate-free Latent Factor Analysis via PSO -- Chapter 3. Learning Rate and Regularization Coefficient-free Latent Factor Analysis via PSO -- Chapter 4. Regularization and Momentum Coefficient-free Non-negative Latent Factor Analysis via PSO -- Chapter 5. Advanced Learning rate-free Latent Factor Analysis via P2SO -- Chapter 6. Conclusion and Discussion.
520
$a
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
650
0
$a
Swarm intelligence.
$3
577800
650
0
$a
Latent structure analysis.
$3
539434
700
1
$a
Luo, Xin.
$3
3426712
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
https://doi.org/10.1007/978-981-19-6703-0
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9447020
電子資源
11.線上閱覽_V
電子書
EB Q337.3
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入