Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Gromov-hausdorff stability of dynami...
~
Lee, Jihoon.
Linked to FindBook
Google Book
Amazon
博客來
Gromov-hausdorff stability of dynamical systems and applications to PDEs
Record Type:
Electronic resources : Monograph/item
Title/Author:
Gromov-hausdorff stability of dynamical systems and applications to PDEs/ by Jihoon Lee, Carlos Morales.
Author:
Lee, Jihoon.
other author:
Morales, Carlos.
Published:
Cham :Springer International Publishing : : 2022.,
Description:
viii, 166 p. :ill., digital ;24 cm.
[NT 15003449]:
Part I: Abstract Theory -- Gromov-Hausdorff distances -- Stability -- Continuity of Shift Operator -- Shadowing from Gromov-Hausdorff Viewpoint -- Part II: Applications to PDEs -- GH-Stability of Reaction Diffusion Equation -- Stability of Inertial Manifolds -- Stability of Chafee-Infante Equations.
Contained By:
Springer Nature eBook
Subject:
Geometry, Differential. -
Online resource:
https://doi.org/10.1007/978-3-031-12031-2
ISBN:
9783031120312
Gromov-hausdorff stability of dynamical systems and applications to PDEs
Lee, Jihoon.
Gromov-hausdorff stability of dynamical systems and applications to PDEs
[electronic resource] /by Jihoon Lee, Carlos Morales. - Cham :Springer International Publishing :2022. - viii, 166 p. :ill., digital ;24 cm. - Frontiers in mathematics,1660-8054. - Frontiers in mathematics..
Part I: Abstract Theory -- Gromov-Hausdorff distances -- Stability -- Continuity of Shift Operator -- Shadowing from Gromov-Hausdorff Viewpoint -- Part II: Applications to PDEs -- GH-Stability of Reaction Diffusion Equation -- Stability of Inertial Manifolds -- Stability of Chafee-Infante Equations.
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs.
ISBN: 9783031120312
Standard No.: 10.1007/978-3-031-12031-2doiSubjects--Topical Terms:
523835
Geometry, Differential.
LC Class. No.: QA641 / .L44 2022
Dewey Class. No.: 516.36
Gromov-hausdorff stability of dynamical systems and applications to PDEs
LDR
:02073nmm a2200337 a 4500
001
2305087
003
DE-He213
005
20221030042815.0
006
m d
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783031120312
$q
(electronic bk.)
020
$a
9783031120305
$q
(paper)
024
7
$a
10.1007/978-3-031-12031-2
$2
doi
035
$a
978-3-031-12031-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA641
$b
.L44 2022
072
7
$a
GPFC
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
GPFC
$2
thema
082
0 4
$a
516.36
$2
23
090
$a
QA641
$b
.L478 2022
100
1
$a
Lee, Jihoon.
$3
3607874
245
1 0
$a
Gromov-hausdorff stability of dynamical systems and applications to PDEs
$h
[electronic resource] /
$c
by Jihoon Lee, Carlos Morales.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2022.
300
$a
viii, 166 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Frontiers in mathematics,
$x
1660-8054
505
0
$a
Part I: Abstract Theory -- Gromov-Hausdorff distances -- Stability -- Continuity of Shift Operator -- Shadowing from Gromov-Hausdorff Viewpoint -- Part II: Applications to PDEs -- GH-Stability of Reaction Diffusion Equation -- Stability of Inertial Manifolds -- Stability of Chafee-Infante Equations.
520
$a
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs.
650
0
$a
Geometry, Differential.
$3
523835
650
0
$a
Differential equations, Partial.
$3
518115
650
0
$a
Differentiable dynamical systems.
$3
524351
650
1 4
$a
Dynamical Systems.
$3
3538746
650
2 4
$a
Differential Equations.
$3
907890
650
2 4
$a
Differential Geometry.
$3
891003
700
1
$a
Morales, Carlos.
$3
3607875
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Frontiers in mathematics.
$3
1535268
856
4 0
$u
https://doi.org/10.1007/978-3-031-12031-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9446636
電子資源
11.線上閱覽_V
電子書
EB QA641 .L44 2022
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login