Computer vision - ECCV 2022 = 17th E...
European Conference on Computer Vision (2022 :)

FindBook      Google Book      Amazon      博客來     
  • Computer vision - ECCV 2022 = 17th European Conference, Tel Aviv, Israel, October 23-27, 2022 : proceedings.. Part xxx /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Computer vision - ECCV 2022/ edited by Shai Avidan ... [et al.].
    其他題名: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022 : proceedings.
    其他作者: Avidan, Shai.
    團體作者: European Conference on Computer Vision
    出版者: Cham :Springer Nature Switzerland : : 2022.,
    面頁冊數: lv, 745 p. :ill., digital ;24 cm.
    內容註: Fast Two-View Motion Segmentation Using Christoffel Polynomials -- UCTNet: Uncertainty-Aware Cross-Modal Transformer Network for Indoor RGB-D Semantic Segmentation -- Bi-directional Contrastive Learning for Domain Adaptive Semantic Segmentation -- Learning Regional Purity for Instance Segmentation on 3D Point Clouds -- Cross-Domain Few-Shot Semantic Segmentation -- Generative Subgraph Contrast for Self-Supervised Graph Representation Learning -- SdAE: Self-Distillated Masked Autoencoder -- Demystifying Unsupervised Semantic Correspondence Estimation -- Open-Set Semi-Supervised Object Detection -- Vibration-Based Uncertainty Estimation for Learning from Limited Supervision -- Concurrent Subsidiary Supervision for Unsupervised Source-Free Domain Adaptation -- Weakly Supervised Object Localization through Inter-class Feature Similarity and Intra-Class Appearance Consistency -- Active Learning Strategies for Weakly-Supervised Object Detection -- Mc-BEiT: Multi-Choice Discretization for Image BERT Pre-training -- Bootstrapped Masked Autoencoders for Vision BERT Pretraining -- Unsupervised Visual Representation Learning by Synchronous Momentum Grouping -- Improving Few-Shot Part Segmentation Using Coarse Supervision -- What to Hide from Your Students: Attention-Guided Masked Image Modeling -- Pointly-Supervised Panoptic Segmentation -- MVP: Multimodality-Guided Visual Pre-training -- Locally Varying Distance Transform for Unsupervised Visual Anomaly Detection -- HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation -- SPot-the-Difference Self-Supervised Pre-training for Anomaly Detection and Segmentation -- Dual-Domain Self-Supervised Learning and Model Adaption for Deep Compressive Imaging -- Unsupervised Selective Labeling for More Effective Semi-Supervised Learning -- Max Pooling with Vision Transformers Reconciles Class and Shape in Weakly Supervised Semantic Segmentation -- Dense Siamese Network for Dense Unsupervised Learning -- Multi-Granularity Distillation Scheme towards Lightweight Semi-Supervised Semantic Segmentation -- CP2: Copy-Paste Contrastive Pretraining for Semantic Segmentation -- Self-Filtering: A Noise-Aware Sample Selection for Label Noise with Confidence Penalization -- RDA: Reciprocal Distribution Alignment for Robust Semi-Supervised Learning -- MemSAC: Memory Augmented Sample Consistency for Large Scale Domain Adaptation -- United Defocus Blur Detection and Deblurring via Adversarial Promoting Learning -- Synergistic Self-Supervised and Quantization Learning -- Semi-Supervised Vision Transformers -- Domain Adaptive Video Segmentation via Temporal Pseudo Supervision -- Diverse Learner: Exploring Diverse Supervision for Semi-Supervised Object Detection -- A Closer Look at Invariances in Self-Supervised Pre-training for 3D Vision -- ConMatch: Semi-Supervised Learning with Confidence-Guided Consistency Regularization -- FedX: Unsupervised Federated Learning with Cross Knowledge Distillation -- W2N: Switching from Weak Supervision to Noisy Supervision for Object Detection -- Decoupled Adversarial Contrastive Learning for Self-Supervised Adversarial Robustness.
    Contained By: Springer Nature eBook
    標題: Computer vision - Congresses. -
    電子資源: https://doi.org/10.1007/978-3-031-20056-4
    ISBN: 9783031200564
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9446352 電子資源 11.線上閱覽_V 電子書 EB TA1634 .E87 2022 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入