Computer vision - ECCV 2022 = 17th E...
European Conference on Computer Vision (2022 :)

FindBook      Google Book      Amazon      博客來     
  • Computer vision - ECCV 2022 = 17th European Conference, Tel Aviv, Israel, October 23-27, 2022 : proceedings.. Part XXV /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Computer vision - ECCV 2022/ edited by Shai Avidan ... [et al.].
    其他題名: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022 : proceedings.
    其他作者: Avidan, Shai.
    團體作者: European Conference on Computer Vision
    出版者: Cham :Springer Nature Switzerland : : 2022.,
    面頁冊數: lvi, 759 p. :ill. (chiefly color), digital ;24 cm.
    內容註: Cross-Domain Ensemble Distillation for Domain Generalization -- Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels -- Hyperspherical Learning in Multi-Label Classification -- When Active Learning Meets Implicit Semantic Data Augmentation -- VL-LTR: Learning Class-Wise Visual-Linguistic Representation for Long-Tailed Visual Recognition -- Class Is Invariant to Context and Vice Versa: On Learning Invariance for Out-of-Distribution Generalization -- Hierarchical Semi-Supervised Contrastive Learning for ContaminationResistant Anomaly Detection -- Tracking by Associating Clips -- RealPatch: A Statistical Matching Framework for Model Patching with Real Samples -- Background-Insensitive Scene Text Recognition with Text Semantic Segmentation -- Semantic Novelty Detection via Relational Reasoning -- Improving Closed and Open-Vocabulary Attribute Prediction Using Transformers -- Training Vision Transformers with Only 2040 Images -- Bridging Images and Videos: A Simple Learning Framework for Large Vocabulary Video Object Detection -- TDAM: Top-Down Attention Module for Contextually Guided Feature Selection in CNNs -- Automatic Check-Out via Prototype-Based Classifier Learning from Single-Product Exemplars -- Overcoming Shortcut Learning in a Target Domain by Generalizing Basic Visual Factors from a Source Domain -- Photo-Realistic Neural Domain Randomization -- Wave-ViT: Unifying Wavelet and Transformers for Visual Representation Learning -- Tailoring Self-Supervision for Supervised Learning -- Difficulty-Aware Simulator for Open Set Recognition -- Few-Shot Class-Incremental Learning from an Open-Set Perspective -- FOSTER: Feature Boosting and Compression for Class-Incremental Learning -- Visual Knowledge Tracing -- S3C: Self-Supervised Stochastic Classifiers for Few-Shot ClassIncremental Learning -- Improving Fine-Grained Visual Recognition in Low Data Regimes via Self-Boosting Attention Mechanism -- VSA: Learning Varied-Size Window Attention in Vision Transformers -- Unbiased Manifold Augmentation for Coarse Class Subdivision -- DenseHybrid: Hybrid Anomaly Detection for Dense Open-Set Recognition -- Rethinking Confidence Calibration for Failure Prediction -- Uncertainty-Guided Source-Free Domain Adaptation -- Should All Proposals Be Treated Equally in Object Detection? -- VIP: Unified Certified Detection and Recovery for Patch Attack with Vision Transformers -- incDFM: Incremental Deep Feature Modeling for Continual Novelty Detection -- IGFormer: Interaction Graph Transformer for Skeleton-Based Human Interaction Recognition -- PRIME: A Few Primitives Can Boost Robustness to Common Corruptions -- Rotation Regularization without Rotation -- Towards Accurate Open-Set Recognition via Background-Class Regularization -- In Defense of Image Pre-training for Spatiotemporal Recognition -- Augmenting Deep Classifiers with Polynomial Neural Networks -- Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection -- Online Task-Free Continual Learning with Dynamic Sparse Distributed Memory.
    Contained By: Springer Nature eBook
    標題: Computer vision - Congresses. -
    電子資源: https://doi.org/10.1007/978-3-031-19806-9
    ISBN: 9783031198069
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9446307 電子資源 11.線上閱覽_V 電子書 EB TA1634 .E87 2022 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入