語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Parameter estimation in stochastic v...
~
Bishwal, Jaya P. N.
FindBook
Google Book
Amazon
博客來
Parameter estimation in stochastic volatility models
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Parameter estimation in stochastic volatility models/ by Jaya P. N. Bishwal.
作者:
Bishwal, Jaya P. N.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xxx, 613 p. :ill., digital ;24 cm.
內容註:
Stochastic Volatility Models: Methods of Pricing, Hedging and Estimation -- Sequential Monte Carlo Methods -- Parameter Estimation in the Heston Model -- Fractional Ornstein-Uhlenbeck Processes, Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck Processes -- Inference for General Semimartingales and Selfsimilar Processes -- Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility Model -- Berry-Esseen Inequalities for the Functional Ornstein-Uhlenbeck-Inverse-Gaussian Process -- Maximum Quasi-likelihood Estimation in Fractional Levy Stochastic Volatility Model -- Estimation in Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model -- Parameter Estimation in Student Ornstein-Uhlenbeck Model -- Berry-Esseen Asymptotics for Pearson Diffusions -- Bayesian Maximum Likelihood Estimation in Fractional Stochastic Volatility Models -- Berry-Esseen-Stein-Malliavin Theory for Fractional Ornstein-Uhlenbeck Process -- Approximate Maximum Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model -- Appendix.
Contained By:
Springer Nature eBook
標題:
Parameter estimation. -
電子資源:
https://doi.org/10.1007/978-3-031-03861-7
ISBN:
9783031038617
Parameter estimation in stochastic volatility models
Bishwal, Jaya P. N.
Parameter estimation in stochastic volatility models
[electronic resource] /by Jaya P. N. Bishwal. - Cham :Springer International Publishing :2022. - xxx, 613 p. :ill., digital ;24 cm.
Stochastic Volatility Models: Methods of Pricing, Hedging and Estimation -- Sequential Monte Carlo Methods -- Parameter Estimation in the Heston Model -- Fractional Ornstein-Uhlenbeck Processes, Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck Processes -- Inference for General Semimartingales and Selfsimilar Processes -- Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility Model -- Berry-Esseen Inequalities for the Functional Ornstein-Uhlenbeck-Inverse-Gaussian Process -- Maximum Quasi-likelihood Estimation in Fractional Levy Stochastic Volatility Model -- Estimation in Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model -- Parameter Estimation in Student Ornstein-Uhlenbeck Model -- Berry-Esseen Asymptotics for Pearson Diffusions -- Bayesian Maximum Likelihood Estimation in Fractional Stochastic Volatility Models -- Berry-Esseen-Stein-Malliavin Theory for Fractional Ornstein-Uhlenbeck Process -- Approximate Maximum Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model -- Appendix.
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
ISBN: 9783031038617
Standard No.: 10.1007/978-3-031-03861-7doiSubjects--Topical Terms:
567557
Parameter estimation.
LC Class. No.: QA276.8 / .B57 2022
Dewey Class. No.: 519.544
Parameter estimation in stochastic volatility models
LDR
:02934nmm a2200313 a 4500
001
2303424
003
DE-He213
005
20220805231000.0
007
cr nn 008maaau
008
230409s2022 sz s 0 eng d
020
$a
9783031038617
$q
(electronic bk.)
020
$a
9783031038600
$q
(paper)
024
7
$a
10.1007/978-3-031-03861-7
$2
doi
035
$a
978-3-031-03861-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.8
$b
.B57 2022
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.544
$2
23
090
$a
QA276.8
$b
.B622 2022
100
1
$a
Bishwal, Jaya P. N.
$3
836469
245
1 0
$a
Parameter estimation in stochastic volatility models
$h
[electronic resource] /
$c
by Jaya P. N. Bishwal.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xxx, 613 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Stochastic Volatility Models: Methods of Pricing, Hedging and Estimation -- Sequential Monte Carlo Methods -- Parameter Estimation in the Heston Model -- Fractional Ornstein-Uhlenbeck Processes, Levy-Ornstein-Uhlenbeck Processes and Fractional Levy-Ornstein-Uhlenbeck Processes -- Inference for General Semimartingales and Selfsimilar Processes -- Estimation in Gamma-Ornstein-Uhlenbeck Stochastic Volatility Model -- Berry-Esseen Inequalities for the Functional Ornstein-Uhlenbeck-Inverse-Gaussian Process -- Maximum Quasi-likelihood Estimation in Fractional Levy Stochastic Volatility Model -- Estimation in Barndorff-Neilsen-Shephard Ornstein-Uhlenbeck Stochastic Volatility Model -- Parameter Estimation in Student Ornstein-Uhlenbeck Model -- Berry-Esseen Asymptotics for Pearson Diffusions -- Bayesian Maximum Likelihood Estimation in Fractional Stochastic Volatility Models -- Berry-Esseen-Stein-Malliavin Theory for Fractional Ornstein-Uhlenbeck Process -- Approximate Maximum Likelihood Estimation for Sub-fractional Hybrid Stochastic Volatility Model -- Appendix.
520
$a
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
650
0
$a
Parameter estimation.
$3
567557
650
0
$a
Stochastic differential equations.
$3
621860
650
1 4
$a
Mathematical Statistics.
$3
3538791
650
2 4
$a
Stochastic Modelling.
$3
3538808
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-031-03861-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9444973
電子資源
11.線上閱覽_V
電子書
EB QA276.8 .B57 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入