語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Azure data lakehouse toolkit = b...
~
L'Esteve, Ron.
FindBook
Google Book
Amazon
博客來
The Azure data lakehouse toolkit = building and scaling data lakehouses on azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Azure data lakehouse toolkit/ by Ron L'Esteve.
其他題名:
building and scaling data lakehouses on azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake /
作者:
L'Esteve, Ron.
出版者:
Berkeley, CA :Apress : : 2022.,
面頁冊數:
xxii, 465 p. :ill., digital ;24 cm.
內容註:
Part I: Getting Started -- Chapter 1: The Data Lakehouse Paradigm -- Part II: Data Platforms -- Chapter 2: Snowflake -- Chapter 3: Databricks -- Chapter 4: Synapse Analytics -- Part III: Apache Spark ELT -- Chapter 5: Pipelines and Jobs -- Chapter 6: Notebook Code -- Part IV: Delta Lake -- Chapter 7: Schema Evolution -- Chapter 8: Change Feed -- Chapter 9: Clones -- Chapter 10: Live Tables -- Chapter 11: Sharing -- Part V: Optimizing Performance -- Chapter 12: Dynamic Partition Pruning for Querying Star Schemas -- Chapter 13: Z-Ordering & Data Skipping -- Chapter 14: Adaptive Query Execution -- Chapter 15: Bloom Filter Index -- Chapter 16: Hyperspace -- Part VI: Advanced Capabilities -- Chapter 17: Auto Loader -- Chapter 18: Python Wheels -- Chapter 19: Security & Controls.
Contained By:
Springer Nature eBook
標題:
Microsoft Azure (Computing platform) -
電子資源:
https://doi.org/10.1007/978-1-4842-8233-5
ISBN:
9781484282335
The Azure data lakehouse toolkit = building and scaling data lakehouses on azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake /
L'Esteve, Ron.
The Azure data lakehouse toolkit
building and scaling data lakehouses on azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake /[electronic resource] :by Ron L'Esteve. - Berkeley, CA :Apress :2022. - xxii, 465 p. :ill., digital ;24 cm.
Part I: Getting Started -- Chapter 1: The Data Lakehouse Paradigm -- Part II: Data Platforms -- Chapter 2: Snowflake -- Chapter 3: Databricks -- Chapter 4: Synapse Analytics -- Part III: Apache Spark ELT -- Chapter 5: Pipelines and Jobs -- Chapter 6: Notebook Code -- Part IV: Delta Lake -- Chapter 7: Schema Evolution -- Chapter 8: Change Feed -- Chapter 9: Clones -- Chapter 10: Live Tables -- Chapter 11: Sharing -- Part V: Optimizing Performance -- Chapter 12: Dynamic Partition Pruning for Querying Star Schemas -- Chapter 13: Z-Ordering & Data Skipping -- Chapter 14: Adaptive Query Execution -- Chapter 15: Bloom Filter Index -- Chapter 16: Hyperspace -- Part VI: Advanced Capabilities -- Chapter 17: Auto Loader -- Chapter 18: Python Wheels -- Chapter 19: Security & Controls.
Design and implement a modern data lakehouse on the Azure Data Platform using Delta Lake, Apache Spark, Azure Databricks, Azure Synapse Analytics, and Snowflake. This book teaches you the intricate details of the Data Lakehouse Paradigm and how to efficiently design a cloud-based data lakehouse using highly performant and cutting-edge Apache Spark capabilities using Azure Databricks, Azure Synapse Analytics, and Snowflake. You will learn to write efficient PySpark code for batch and streaming ELT jobs on Azure. And you will follow along with practical, scenario-based examples showing how to apply the capabilities of Delta Lake and Apache Spark to optimize performance, and secure, share, and manage a high volume, high velocity, and high variety of data in your lakehouse with ease. The patterns of success that you acquire from reading this book will help you hone your skills to build high-performing and scalable ACID-compliant lakehouses using flexible and cost-efficient decoupled storage and compute capabilities. Extensive coverage of Delta Lake ensures that you are aware of and can benefit from all that this new, open source storage layer can offer. In addition to the deep examples on Databricks in the book, there is coverage of alternative platforms such as Synapse Analytics and Snowflake so that you can make the right platform choice for your needs. After reading this book, you will be able to implement Delta Lake capabilities, including Schema Evolution, Change Feed, Live Tables, Sharing, and Clones to enable better business intelligence and advanced analytics on your data within the Azure Data Platform. What You Will Learn Implement the Data Lakehouse Paradigm on Microsoft's Azure cloud platform Benefit from the new Delta Lake open-source storage layer for data lakehouses Take advantage of schema evolution, change feeds, live tables, and more Write functional PySpark code for data lakehouse ELT jobs Optimize Apache Spark performance through partitioning, indexing, and other tuning options Choose between alternatives such as Databricks, Synapse Analytics, and Snowflake.
ISBN: 9781484282335
Standard No.: 10.1007/978-1-4842-8233-5doiSubjects--Topical Terms:
3201298
Microsoft Azure (Computing platform)
LC Class. No.: TK5105.88813 / .L2 2022
Dewey Class. No.: 006.76
The Azure data lakehouse toolkit = building and scaling data lakehouses on azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake /
LDR
:04001nmm a2200325 a 4500
001
2302821
003
DE-He213
005
20220713123743.0
006
m d
007
cr nn 008maaau
008
230409s2022 cau s 0 eng d
020
$a
9781484282335
$q
(electronic bk.)
020
$a
9781484282328
$q
(paper)
024
7
$a
10.1007/978-1-4842-8233-5
$2
doi
035
$a
978-1-4842-8233-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5105.88813
$b
.L2 2022
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
006.76
$2
23
090
$a
TK5105.88813
$b
.L642 2022
100
1
$a
L'Esteve, Ron.
$3
3603514
245
1 4
$a
The Azure data lakehouse toolkit
$h
[electronic resource] :
$b
building and scaling data lakehouses on azure with Delta Lake, Apache Spark, Databricks, Synapse Analytics, and Snowflake /
$c
by Ron L'Esteve.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2022.
300
$a
xxii, 465 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part I: Getting Started -- Chapter 1: The Data Lakehouse Paradigm -- Part II: Data Platforms -- Chapter 2: Snowflake -- Chapter 3: Databricks -- Chapter 4: Synapse Analytics -- Part III: Apache Spark ELT -- Chapter 5: Pipelines and Jobs -- Chapter 6: Notebook Code -- Part IV: Delta Lake -- Chapter 7: Schema Evolution -- Chapter 8: Change Feed -- Chapter 9: Clones -- Chapter 10: Live Tables -- Chapter 11: Sharing -- Part V: Optimizing Performance -- Chapter 12: Dynamic Partition Pruning for Querying Star Schemas -- Chapter 13: Z-Ordering & Data Skipping -- Chapter 14: Adaptive Query Execution -- Chapter 15: Bloom Filter Index -- Chapter 16: Hyperspace -- Part VI: Advanced Capabilities -- Chapter 17: Auto Loader -- Chapter 18: Python Wheels -- Chapter 19: Security & Controls.
520
$a
Design and implement a modern data lakehouse on the Azure Data Platform using Delta Lake, Apache Spark, Azure Databricks, Azure Synapse Analytics, and Snowflake. This book teaches you the intricate details of the Data Lakehouse Paradigm and how to efficiently design a cloud-based data lakehouse using highly performant and cutting-edge Apache Spark capabilities using Azure Databricks, Azure Synapse Analytics, and Snowflake. You will learn to write efficient PySpark code for batch and streaming ELT jobs on Azure. And you will follow along with practical, scenario-based examples showing how to apply the capabilities of Delta Lake and Apache Spark to optimize performance, and secure, share, and manage a high volume, high velocity, and high variety of data in your lakehouse with ease. The patterns of success that you acquire from reading this book will help you hone your skills to build high-performing and scalable ACID-compliant lakehouses using flexible and cost-efficient decoupled storage and compute capabilities. Extensive coverage of Delta Lake ensures that you are aware of and can benefit from all that this new, open source storage layer can offer. In addition to the deep examples on Databricks in the book, there is coverage of alternative platforms such as Synapse Analytics and Snowflake so that you can make the right platform choice for your needs. After reading this book, you will be able to implement Delta Lake capabilities, including Schema Evolution, Change Feed, Live Tables, Sharing, and Clones to enable better business intelligence and advanced analytics on your data within the Azure Data Platform. What You Will Learn Implement the Data Lakehouse Paradigm on Microsoft's Azure cloud platform Benefit from the new Delta Lake open-source storage layer for data lakehouses Take advantage of schema evolution, change feeds, live tables, and more Write functional PySpark code for data lakehouse ELT jobs Optimize Apache Spark performance through partitioning, indexing, and other tuning options Choose between alternatives such as Databricks, Synapse Analytics, and Snowflake.
650
0
$a
Microsoft Azure (Computing platform)
$3
3201298
650
0
$a
Cloud computing.
$3
1016782
650
0
$a
Electronic data processing.
$3
520749
650
0
$a
Databases.
$3
747532
650
1 4
$a
Database Management.
$3
891010
650
2 4
$a
Microsoft.
$3
3593799
650
2 4
$a
Cloud Computing.
$3
3231328
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-1-4842-8233-5
950
$a
Professional and Applied Computing (SpringerNature-12059)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9444370
電子資源
11.線上閱覽_V
電子書
EB TK5105.88813 .L2 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入