語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Context-aware machine learning and m...
~
Sarker, Iqbal H.
FindBook
Google Book
Amazon
博客來
Context-aware machine learning and mobile data analytics = automated rule-based services with intelligent decision-making /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Context-aware machine learning and mobile data analytics/ by Iqbal Sarker ... [et al.].
其他題名:
automated rule-based services with intelligent decision-making /
其他作者:
Sarker, Iqbal H.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xvi, 157 p. :ill., digital ;24 cm.
內容註:
Part I Preliminaries -- 1 Introduction to Context-Aware Machine Learning and Mobile Data -- Analytics -- 1.1 Introduction -- 1.2 Context-Aware Machine Learning -- 1.3 Mobile Data Analytics -- 1.4 An Overview of this Book -- 1.5 Conclusion -- References -- 2 Application Scenarios and Basic Structure for Context-Aware -- Machine Learning Framework -- 2.1 Motivational Examples with Application Scenarios -- 2.2 Structure and Elements of Context-Aware Machine Learning -- Framework -- 2.2.1 Contextual Data Acquisition -- 2.2.2 Context Discretization -- 2.2.3 Contextual Rule Discovery -- 2.2.4 Dynamic Updating and Management of Rules -- 2.3 Conclusion -- References -- 3 A Literature Review on Context-Aware Machine Learning and -- Mobile Data Analytics -- 3.1 Contextual Information -- 3.1.1 Definitions of Contexts -- 3.1.2 Understanding the Relevancy of Contexts -- 3.2 Context Discretization -- 3.2.1 Discretization of Time-Series Data -- 3.2.2 Static Segmentation -- vii -- viii Contents -- 3.2.3 Dynamic Segmentation -- 3.3 Rule Discovery -- 3.3.1 Association Rule Mining -- 3.3.2 Classification Rules -- 3.4 Incremental Learning and Updating -- 3.5 Identifying the Scope of Research -- 3.6 Conclusion -- References -- Part II Context-Aware Rule Learning and Management -- 4 Contextual Mobile Datasets, Pre-processing and Feature Selection -- 4.1 Smart Mobile Phone Data and Associated Contexts -- 4.1.1 Phone Call Log -- 4.1.2 Mobile SMS Log -- 4.1.3 Smartphone App Usage Log -- 4.1.4 Mobile Phone Notification Log -- 4.1.5 Web or Navigation Log -- 4.1.6 Game Log -- 4.1.7 Smartphone Life Log -- 4.1.8 Dataset Summary -- 4.2 Examples of Contextual Mobile Phone Data -- 4.2.1 Time-Series Mobile Phone Data -- 4.2.2 Mobile phone data with multi-dimensional contexts -- 4.2.3 Contextual Apps Usage Data -- 4.3 Data Preprocessing -- 4.3.1 Data Cleaning -- 4.3.2 Data Integration -- 4.3.3 Data Transformation -- 4.3.4 Data Reduction -- 4.4 Dimensionality Reduction -- 4.4.1 Feature Selection -- 4.4.2 Feature Extraction -- 4.4.3 Dimensionality Reduction Algorithms -- 4.5 Conclusion -- References -- 5 Discretization of Time-Series Behavioral Data and Rule Generation -- based on Temporal Context -- 5.1 Introduction -- 5.2 Requirements Analysis -- 5.3 Time-series Segmentation Approach -- 5.3.1 Approach Overview -- 5.3.2 Initial Time Slices Generation -- 5.3.3 Behavior-Oriented Segments Generation -- Contents ix -- 5.3.4 Selection of Optimal Segmentation -- 5.3.5 Temporal Behavior Rule Generation using Time Segments -- 5.4 Effectiveness Comparison -- 5.5 Conclusion -- References -- 6 Discovering User Behavioral Rules based on Multi-dimensional -- Contexts -- 6.1 Introduction -- 6.2 Multi-dimensional Contexts in User Behavioral Rules -- 6.3 Requirements Analysis -- 6.4 Rule Mining Methodology -- 6.4.1 Identifying the Precedence of Context -- 6.4.2 Designing Association Generation Tree -- 6.4.3 Extracting Non-Redundant Behavioral Association Rules -- 6.5 Experimental Analysis -- 6.5.1 Effect on the Number of Produced Rules -- 6.5.2 Effect of Confidence Preference the Predicted Accuracy -- 6.5.3 Effectiveness Comparison -- 6.6 Conclusion -- References -- 7 Recency-based Updating and Dynamic Management of Contextual -- Rules -- 7.1 Introduction -- 7.2 Requirements Analysis -- 7.3 An Example of Recent Data -- 7.4 Identifying Optimal Period of Recent Log Data -- 7.4.1 Data Splitting -- 7.4.2 Association Generation -- 7.4.3 Score Calculation -- 7.4.4 Data Aggregation -- 7.5 Machine Learning based Behavioral Rule Generation and Management -- 7.6 Effectiveness Comparison and Analysis -- 7.7 Conclusion -- References -- Part III Application and Deep Learning Perspective -- 8 Context-Aware Rule-based Expert System Modeling -- 8.1 Structure of a Context-Aware Mobile Expert System -- 8.2 Context-Aware Rule Generation Methods -- 8.3 Context-Aware IF-THEN Rules and Discussion -- 8.3.1 IF-THEN Classification Rules -- 8.3.2 IF-THEN Association Rules -- x Contents -- 8.4 Conclusion -- References -- 9 Deep Learning for Contextual Mobile Data Analytics -- 9.1 Introduction -- 9.2 Contextual Data -- 9.3 Deep Neural Network Modeling -- 9.3.1 Model Overview -- 9.3.2 Input Layer -- 9.3.3 Hidden Layer(s) -- 9.3.4 Output Layer -- 9.4 Prediction Results of the Model -- 9.5 Conclusion -- References -- 10 Context-Aware Machine Learning System: Applications and -- Challenging Issues -- 10.1 Rule-based Intelligent Mobile Applications -- 10.2 Major Challenges and Research Issues -- 10.3 Concluding Remarks -- References.
Contained By:
Springer Nature eBook
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-3-030-88530-4
ISBN:
9783030885304
Context-aware machine learning and mobile data analytics = automated rule-based services with intelligent decision-making /
Context-aware machine learning and mobile data analytics
automated rule-based services with intelligent decision-making /[electronic resource] :by Iqbal Sarker ... [et al.]. - Cham :Springer International Publishing :2021. - xvi, 157 p. :ill., digital ;24 cm.
Part I Preliminaries -- 1 Introduction to Context-Aware Machine Learning and Mobile Data -- Analytics -- 1.1 Introduction -- 1.2 Context-Aware Machine Learning -- 1.3 Mobile Data Analytics -- 1.4 An Overview of this Book -- 1.5 Conclusion -- References -- 2 Application Scenarios and Basic Structure for Context-Aware -- Machine Learning Framework -- 2.1 Motivational Examples with Application Scenarios -- 2.2 Structure and Elements of Context-Aware Machine Learning -- Framework -- 2.2.1 Contextual Data Acquisition -- 2.2.2 Context Discretization -- 2.2.3 Contextual Rule Discovery -- 2.2.4 Dynamic Updating and Management of Rules -- 2.3 Conclusion -- References -- 3 A Literature Review on Context-Aware Machine Learning and -- Mobile Data Analytics -- 3.1 Contextual Information -- 3.1.1 Definitions of Contexts -- 3.1.2 Understanding the Relevancy of Contexts -- 3.2 Context Discretization -- 3.2.1 Discretization of Time-Series Data -- 3.2.2 Static Segmentation -- vii -- viii Contents -- 3.2.3 Dynamic Segmentation -- 3.3 Rule Discovery -- 3.3.1 Association Rule Mining -- 3.3.2 Classification Rules -- 3.4 Incremental Learning and Updating -- 3.5 Identifying the Scope of Research -- 3.6 Conclusion -- References -- Part II Context-Aware Rule Learning and Management -- 4 Contextual Mobile Datasets, Pre-processing and Feature Selection -- 4.1 Smart Mobile Phone Data and Associated Contexts -- 4.1.1 Phone Call Log -- 4.1.2 Mobile SMS Log -- 4.1.3 Smartphone App Usage Log -- 4.1.4 Mobile Phone Notification Log -- 4.1.5 Web or Navigation Log -- 4.1.6 Game Log -- 4.1.7 Smartphone Life Log -- 4.1.8 Dataset Summary -- 4.2 Examples of Contextual Mobile Phone Data -- 4.2.1 Time-Series Mobile Phone Data -- 4.2.2 Mobile phone data with multi-dimensional contexts -- 4.2.3 Contextual Apps Usage Data -- 4.3 Data Preprocessing -- 4.3.1 Data Cleaning -- 4.3.2 Data Integration -- 4.3.3 Data Transformation -- 4.3.4 Data Reduction -- 4.4 Dimensionality Reduction -- 4.4.1 Feature Selection -- 4.4.2 Feature Extraction -- 4.4.3 Dimensionality Reduction Algorithms -- 4.5 Conclusion -- References -- 5 Discretization of Time-Series Behavioral Data and Rule Generation -- based on Temporal Context -- 5.1 Introduction -- 5.2 Requirements Analysis -- 5.3 Time-series Segmentation Approach -- 5.3.1 Approach Overview -- 5.3.2 Initial Time Slices Generation -- 5.3.3 Behavior-Oriented Segments Generation -- Contents ix -- 5.3.4 Selection of Optimal Segmentation -- 5.3.5 Temporal Behavior Rule Generation using Time Segments -- 5.4 Effectiveness Comparison -- 5.5 Conclusion -- References -- 6 Discovering User Behavioral Rules based on Multi-dimensional -- Contexts -- 6.1 Introduction -- 6.2 Multi-dimensional Contexts in User Behavioral Rules -- 6.3 Requirements Analysis -- 6.4 Rule Mining Methodology -- 6.4.1 Identifying the Precedence of Context -- 6.4.2 Designing Association Generation Tree -- 6.4.3 Extracting Non-Redundant Behavioral Association Rules -- 6.5 Experimental Analysis -- 6.5.1 Effect on the Number of Produced Rules -- 6.5.2 Effect of Confidence Preference the Predicted Accuracy -- 6.5.3 Effectiveness Comparison -- 6.6 Conclusion -- References -- 7 Recency-based Updating and Dynamic Management of Contextual -- Rules -- 7.1 Introduction -- 7.2 Requirements Analysis -- 7.3 An Example of Recent Data -- 7.4 Identifying Optimal Period of Recent Log Data -- 7.4.1 Data Splitting -- 7.4.2 Association Generation -- 7.4.3 Score Calculation -- 7.4.4 Data Aggregation -- 7.5 Machine Learning based Behavioral Rule Generation and Management -- 7.6 Effectiveness Comparison and Analysis -- 7.7 Conclusion -- References -- Part III Application and Deep Learning Perspective -- 8 Context-Aware Rule-based Expert System Modeling -- 8.1 Structure of a Context-Aware Mobile Expert System -- 8.2 Context-Aware Rule Generation Methods -- 8.3 Context-Aware IF-THEN Rules and Discussion -- 8.3.1 IF-THEN Classification Rules -- 8.3.2 IF-THEN Association Rules -- x Contents -- 8.4 Conclusion -- References -- 9 Deep Learning for Contextual Mobile Data Analytics -- 9.1 Introduction -- 9.2 Contextual Data -- 9.3 Deep Neural Network Modeling -- 9.3.1 Model Overview -- 9.3.2 Input Layer -- 9.3.3 Hidden Layer(s) -- 9.3.4 Output Layer -- 9.4 Prediction Results of the Model -- 9.5 Conclusion -- References -- 10 Context-Aware Machine Learning System: Applications and -- Challenging Issues -- 10.1 Rule-based Intelligent Mobile Applications -- 10.2 Major Challenges and Research Issues -- 10.3 Concluding Remarks -- References.
This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.
ISBN: 9783030885304
Standard No.: 10.1007/978-3-030-88530-4doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Context-aware machine learning and mobile data analytics = automated rule-based services with intelligent decision-making /
LDR
:06981nmm a2200361 a 4500
001
2301617
003
DE-He213
005
20220114081659.0
006
m d
007
cr nn 008maaau
008
230409s2021 sz s 0 eng d
020
$a
9783030885304
$q
(electronic bk.)
020
$a
9783030885298
$q
(paper)
024
7
$a
10.1007/978-3-030-88530-4
$2
doi
035
$a
978-3-030-88530-4
035
$a
2301617
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.C761 2021
245
0 0
$a
Context-aware machine learning and mobile data analytics
$h
[electronic resource] :
$b
automated rule-based services with intelligent decision-making /
$c
by Iqbal Sarker ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xvi, 157 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part I Preliminaries -- 1 Introduction to Context-Aware Machine Learning and Mobile Data -- Analytics -- 1.1 Introduction -- 1.2 Context-Aware Machine Learning -- 1.3 Mobile Data Analytics -- 1.4 An Overview of this Book -- 1.5 Conclusion -- References -- 2 Application Scenarios and Basic Structure for Context-Aware -- Machine Learning Framework -- 2.1 Motivational Examples with Application Scenarios -- 2.2 Structure and Elements of Context-Aware Machine Learning -- Framework -- 2.2.1 Contextual Data Acquisition -- 2.2.2 Context Discretization -- 2.2.3 Contextual Rule Discovery -- 2.2.4 Dynamic Updating and Management of Rules -- 2.3 Conclusion -- References -- 3 A Literature Review on Context-Aware Machine Learning and -- Mobile Data Analytics -- 3.1 Contextual Information -- 3.1.1 Definitions of Contexts -- 3.1.2 Understanding the Relevancy of Contexts -- 3.2 Context Discretization -- 3.2.1 Discretization of Time-Series Data -- 3.2.2 Static Segmentation -- vii -- viii Contents -- 3.2.3 Dynamic Segmentation -- 3.3 Rule Discovery -- 3.3.1 Association Rule Mining -- 3.3.2 Classification Rules -- 3.4 Incremental Learning and Updating -- 3.5 Identifying the Scope of Research -- 3.6 Conclusion -- References -- Part II Context-Aware Rule Learning and Management -- 4 Contextual Mobile Datasets, Pre-processing and Feature Selection -- 4.1 Smart Mobile Phone Data and Associated Contexts -- 4.1.1 Phone Call Log -- 4.1.2 Mobile SMS Log -- 4.1.3 Smartphone App Usage Log -- 4.1.4 Mobile Phone Notification Log -- 4.1.5 Web or Navigation Log -- 4.1.6 Game Log -- 4.1.7 Smartphone Life Log -- 4.1.8 Dataset Summary -- 4.2 Examples of Contextual Mobile Phone Data -- 4.2.1 Time-Series Mobile Phone Data -- 4.2.2 Mobile phone data with multi-dimensional contexts -- 4.2.3 Contextual Apps Usage Data -- 4.3 Data Preprocessing -- 4.3.1 Data Cleaning -- 4.3.2 Data Integration -- 4.3.3 Data Transformation -- 4.3.4 Data Reduction -- 4.4 Dimensionality Reduction -- 4.4.1 Feature Selection -- 4.4.2 Feature Extraction -- 4.4.3 Dimensionality Reduction Algorithms -- 4.5 Conclusion -- References -- 5 Discretization of Time-Series Behavioral Data and Rule Generation -- based on Temporal Context -- 5.1 Introduction -- 5.2 Requirements Analysis -- 5.3 Time-series Segmentation Approach -- 5.3.1 Approach Overview -- 5.3.2 Initial Time Slices Generation -- 5.3.3 Behavior-Oriented Segments Generation -- Contents ix -- 5.3.4 Selection of Optimal Segmentation -- 5.3.5 Temporal Behavior Rule Generation using Time Segments -- 5.4 Effectiveness Comparison -- 5.5 Conclusion -- References -- 6 Discovering User Behavioral Rules based on Multi-dimensional -- Contexts -- 6.1 Introduction -- 6.2 Multi-dimensional Contexts in User Behavioral Rules -- 6.3 Requirements Analysis -- 6.4 Rule Mining Methodology -- 6.4.1 Identifying the Precedence of Context -- 6.4.2 Designing Association Generation Tree -- 6.4.3 Extracting Non-Redundant Behavioral Association Rules -- 6.5 Experimental Analysis -- 6.5.1 Effect on the Number of Produced Rules -- 6.5.2 Effect of Confidence Preference the Predicted Accuracy -- 6.5.3 Effectiveness Comparison -- 6.6 Conclusion -- References -- 7 Recency-based Updating and Dynamic Management of Contextual -- Rules -- 7.1 Introduction -- 7.2 Requirements Analysis -- 7.3 An Example of Recent Data -- 7.4 Identifying Optimal Period of Recent Log Data -- 7.4.1 Data Splitting -- 7.4.2 Association Generation -- 7.4.3 Score Calculation -- 7.4.4 Data Aggregation -- 7.5 Machine Learning based Behavioral Rule Generation and Management -- 7.6 Effectiveness Comparison and Analysis -- 7.7 Conclusion -- References -- Part III Application and Deep Learning Perspective -- 8 Context-Aware Rule-based Expert System Modeling -- 8.1 Structure of a Context-Aware Mobile Expert System -- 8.2 Context-Aware Rule Generation Methods -- 8.3 Context-Aware IF-THEN Rules and Discussion -- 8.3.1 IF-THEN Classification Rules -- 8.3.2 IF-THEN Association Rules -- x Contents -- 8.4 Conclusion -- References -- 9 Deep Learning for Contextual Mobile Data Analytics -- 9.1 Introduction -- 9.2 Contextual Data -- 9.3 Deep Neural Network Modeling -- 9.3.1 Model Overview -- 9.3.2 Input Layer -- 9.3.3 Hidden Layer(s) -- 9.3.4 Output Layer -- 9.4 Prediction Results of the Model -- 9.5 Conclusion -- References -- 10 Context-Aware Machine Learning System: Applications and -- Challenging Issues -- 10.1 Rule-based Intelligent Mobile Applications -- 10.2 Major Challenges and Research Issues -- 10.3 Concluding Remarks -- References.
520
$a
This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Mobile Computing.
$3
3201332
700
1
$a
Sarker, Iqbal H.
$3
3601193
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-88530-4
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9443166
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入