語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Non-bloch band theory of non-hermiti...
~
Yokomizo, Kazuki.
FindBook
Google Book
Amazon
博客來
Non-bloch band theory of non-hermitian systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Non-bloch band theory of non-hermitian systems/ by Kazuki Yokomizo.
作者:
Yokomizo, Kazuki.
出版者:
Singapore :Springer Nature Singapore : : 2022.,
面頁冊數:
xiii, 92 p. :ill. (some col.), digital ;24 cm.
附註:
"Doctoral Thesis accepted by Tokyo Institute of Technology, Tokyo, Japan."
內容註:
Introduction -- Hermitian Systems and Non-Hermitian Systems -- Non-Hermitian Open Chain and Periodic Chain -- Non-Bloch Band Theory of Non-Hermitian Systems and Bulk-Edge Correspondence -- Topological Semimetal Phase With Exceptional Points in One-Dimensional Non-Hermitian Systems -- Non-Bloch Band Theory in Bosonic Bogoliubov-de Gennes Systems -- Summary and Outlook.
Contained By:
Springer Nature eBook
標題:
Boundary element methods. -
電子資源:
https://doi.org/10.1007/978-981-19-1858-2
ISBN:
9789811918582
Non-bloch band theory of non-hermitian systems
Yokomizo, Kazuki.
Non-bloch band theory of non-hermitian systems
[electronic resource] /by Kazuki Yokomizo. - Singapore :Springer Nature Singapore :2022. - xiii, 92 p. :ill. (some col.), digital ;24 cm. - Springer theses,2190-5061. - Springer theses..
"Doctoral Thesis accepted by Tokyo Institute of Technology, Tokyo, Japan."
Introduction -- Hermitian Systems and Non-Hermitian Systems -- Non-Hermitian Open Chain and Periodic Chain -- Non-Bloch Band Theory of Non-Hermitian Systems and Bulk-Edge Correspondence -- Topological Semimetal Phase With Exceptional Points in One-Dimensional Non-Hermitian Systems -- Non-Bloch Band Theory in Bosonic Bogoliubov-de Gennes Systems -- Summary and Outlook.
This book constructs a non-Bloch band theory and studies physics described by non-Hermitian Hamiltonian in terms of the theory proposed here. In non-Hermitian crystals, the author introduces the non-Bloch band theory which produces an energy spectrum in the limit of a large system size. The energy spectrum is then calculated from a generalized Brillouin zone for a complex Bloch wave number. While a generalized Brillouin zone becomes a unit circle on a complex plane in Hermitian systems, it becomes a circle with cusps in non-Hermitian systems. Such unique features of the generalized Brillouin zone realize remarkable phenomena peculiar in non-Hermitian systems. Further the author reveals rich aspects of non-Hermitian physics in terms of the non-Bloch band theory. First, a topological invariant defined by a generalized Brillouin zone implies the appearance of topological edge states. Second, a topological semimetal phase with exceptional points appears, The topological semimetal phase is unique to non-Hermitian systems because it is caused by the deformation of the generalized Brillouin zone by changes of system parameters. Third, the author reveals a certain relationship between the non-Bloch waves and non-Hermitian topology.
ISBN: 9789811918582
Standard No.: 10.1007/978-981-19-1858-2doiSubjects--Topical Terms:
566490
Boundary element methods.
LC Class. No.: TA347.B69 / Y65 2022
Dewey Class. No.: 518
Non-bloch band theory of non-hermitian systems
LDR
:02736nmm a2200349 a 4500
001
2300855
003
DE-He213
005
20220422151826.0
006
m d
007
cr nn 008maaau
008
230324s2022 si s 0 eng d
020
$a
9789811918582
$q
(electronic bk.)
020
$a
9789811918575
$q
(paper)
024
7
$a
10.1007/978-981-19-1858-2
$2
doi
035
$a
978-981-19-1858-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.B69
$b
Y65 2022
072
7
$a
PHFC
$2
bicssc
072
7
$a
SCI077000
$2
bisacsh
072
7
$a
PHFC
$2
thema
082
0 4
$a
518
$2
23
090
$a
TA347.B69
$b
Y54 2022
100
1
$a
Yokomizo, Kazuki.
$3
3599728
245
1 0
$a
Non-bloch band theory of non-hermitian systems
$h
[electronic resource] /
$c
by Kazuki Yokomizo.
260
$a
Singapore :
$b
Springer Nature Singapore :
$b
Imprint: Springer,
$c
2022.
300
$a
xiii, 92 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5061
500
$a
"Doctoral Thesis accepted by Tokyo Institute of Technology, Tokyo, Japan."
505
0
$a
Introduction -- Hermitian Systems and Non-Hermitian Systems -- Non-Hermitian Open Chain and Periodic Chain -- Non-Bloch Band Theory of Non-Hermitian Systems and Bulk-Edge Correspondence -- Topological Semimetal Phase With Exceptional Points in One-Dimensional Non-Hermitian Systems -- Non-Bloch Band Theory in Bosonic Bogoliubov-de Gennes Systems -- Summary and Outlook.
520
$a
This book constructs a non-Bloch band theory and studies physics described by non-Hermitian Hamiltonian in terms of the theory proposed here. In non-Hermitian crystals, the author introduces the non-Bloch band theory which produces an energy spectrum in the limit of a large system size. The energy spectrum is then calculated from a generalized Brillouin zone for a complex Bloch wave number. While a generalized Brillouin zone becomes a unit circle on a complex plane in Hermitian systems, it becomes a circle with cusps in non-Hermitian systems. Such unique features of the generalized Brillouin zone realize remarkable phenomena peculiar in non-Hermitian systems. Further the author reveals rich aspects of non-Hermitian physics in terms of the non-Bloch band theory. First, a topological invariant defined by a generalized Brillouin zone implies the appearance of topological edge states. Second, a topological semimetal phase with exceptional points appears, The topological semimetal phase is unique to non-Hermitian systems because it is caused by the deformation of the generalized Brillouin zone by changes of system parameters. Third, the author reveals a certain relationship between the non-Bloch waves and non-Hermitian topology.
650
0
$a
Boundary element methods.
$3
566490
650
0
$a
Hermitian structures.
$3
708443
650
0
$a
Condensed matter.
$3
526213
650
0
$a
Hamiltonian systems.
$3
629810
650
1 4
$a
Condensed Matter Physics.
$3
1067080
650
2 4
$a
Topological Material.
$3
3591906
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
1066859
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer theses.
$3
1314442
856
4 0
$u
https://doi.org/10.1007/978-981-19-1858-2
950
$a
Physics and Astronomy (SpringerNature-11651)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9442747
電子資源
11.線上閱覽_V
電子書
EB TA347.B69 Y65 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入