Monte Carlo and Quasi-Monte Carlo me...
International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (2020 :)

Linked to FindBook      Google Book      Amazon      博客來     
  • Monte Carlo and Quasi-Monte Carlo methods = MCQMC 2020, Oxford, United Kingdom, August 10-14 /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Monte Carlo and Quasi-Monte Carlo methods/ edited by Alexander Keller.
    Reminder of title: MCQMC 2020, Oxford, United Kingdom, August 10-14 /
    remainder title: MCQMC 2020
    other author: Keller, Alexander.
    corporate name: International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
    Published: Cham :Springer International Publishing : : 2022.,
    Description: xvi, 311 p. :ill. (chiefly col.), digital ;24 cm.
    [NT 15003449]: The MCQMC Conference Series -- The MCQMC Conference Series: P. L'Ecuyer and F. Puchhammer, Density Estimation by Monte Carlo and Quasi-Monte Carlo -- Sou-Cheng T. Choi, Fred J. Hickernell, Rathinavel Jagadeeswaran, Michael J. McCourt, and Aleksei G. Sorokin, Quasi-Monte Carlo Software -- Part II Regular Talks: P. L'Ecuyer, P. Marion, M. Godin, and F. Puchhamme, A Tool for Custom Construction of QMC and RQMC Point Sets -- Art B. Owen, On Dropping the first Sobol' Point -- C. Lemieux and J. Wiart, On the Distribution of Scrambled Nets over Unanchored Boxes -- S. Heinrich, Lower Bounds for the Number of Random Bits in Monte Carlo Algorithms -- N. Binder, S. Fricke, and A. Keller, Massively Parallel Path Space Filtering -- M. Hird, S. Livingstone, and G. Zanella, A fresh Take on 'Barker Dynamics' for MCMC -- P. Blondeel, P. Robbe, S. Francois, G. Lombaert and S. Vandewalle, On the Selection of Random Field Evaluation Points in the p-MLQMC Method -- S. Si, Chris. J. Oates, Andrew B. Duncan, L. Carin, and Francois-Xavier Briol, Scalable Control Variates for Monte Carlo Methods via Stochastic Optimization -- Andrei S. Cozma and C. Reisinger, Simulation of Conditional Expectations under fast mean-reverting Stochastic Volatility Models -- M. Huber, Generating from the Strauss Process using stitching -- R. Nasdala and D. Potts, A Note on Transformed Fourier Systems for the Approximation of Non-Periodic Signals -- M. Hofert, A. Prasad, and Mu Zhu, Applications of Multivariate Quasi-Random Sampling with Neural Networks -- A. Keller and Matthijs Van keirsbilck, Artificial Neural Networks generated by Low Discrepancy Sequences.
    Contained By: Springer Nature eBook
    Subject: Monte Carlo method - Congresses. -
    Online resource: https://doi.org/10.1007/978-3-030-98319-2
    ISBN: 9783030983192
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login