Biomedical image registration, domai...
Aubreville, Marc.

FindBook      Google Book      Amazon      博客來     
  • Biomedical image registration, domain generalisation and out-of-distribution analysis = MICCAI 2021 challenges: MIDOG 2021, MOOD 2021, and Learn2Reg 2021 : held in conjunction with MICCAI 20201, Strasbourg, France, September 27 - October 1, 2021 : proceedings /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Biomedical image registration, domain generalisation and out-of-distribution analysis/ edited by Marc Aubreville, David Zimmerer, Mattias Heinrich.
    其他題名: MICCAI 2021 challenges: MIDOG 2021, MOOD 2021, and Learn2Reg 2021 : held in conjunction with MICCAI 20201, Strasbourg, France, September 27 - October 1, 2021 : proceedings /
    其他題名: MICCAI 2021
    其他作者: Aubreville, Marc.
    出版者: Cham :Springer International Publishing : : 2022.,
    面頁冊數: ix, 194 p. :ill., digital ;24 cm.
    內容註: Preface MIDOG 2021 -- Domain Adversarial RetinaNet as a Reference Algorithm for the MItosis DOmainGeneralization Challenge -- Assessing domain adaptation techniques for mitosis detection in multi-scanner breast cancer histopathology images -- Domain-Robust Mitotic Figure Detection with StyleGAN -- Two-step Domain Adaptation for Mitosis Cell Detection in Histopathology Images -- Robust Mitosis Detection Using a Cascade Mask-RCNN Approach With Domain-Specific Residual Cycle-GAN Data Augmentation -- Stain-Robust Mitotic Figure Detection for the Mitosis Domain Generalization Challenge -- MitoDet: Simple and robust mitosis detection -- Multi-source Domain Adaptation Using Gradient Reversal Layer for Mitotic Cell Detection -- Rotation Invariance and Extensive Data Augmentation: a strategy for the Mitosis Domain Generalization (MIDOG) Challenge -- Detecting Mitosis against Domain Shift using a Fused Detector and Deep Ensemble Classi cation Model for MIDOG Challenge -- Domain Adaptive Cascade R-CNN for Mitosis DOmain Generalization (MIDOG) Challenge -- Reducing Domain Shift For Mitosis Detection Using Preprocessing Homogenizers -- Cascade RCNN for MIDOG Challenge -- Sk-Unet Model with Fourier Domain for Mitosis Detection -- Preface MOOD21 -- Self-Supervised 3D Out-of-Distribution Detection via Pseudoanomaly Generation -- Self-Supervised Medical Out-of-Distribution Using U-Net Vision Transformers -- SS3D: Unsupervised Out-of-Distribution Detection and Localization for Medical Volumes -- MetaDetector: Detecting Outliers by Learning to Learn from Self-supervision -- AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation -- Preface Learn2Reg 2021 -- Deformable Registration of Brain MR Images via a Hybrid Loss -- Fraunhofer MEVIS Image Registration Solutions for the Learn2Reg 2021 Challenge -- Unsupervised Volumetric Displacement Fields Using Cost Function Unrolling -- Conditional Deep Laplacian Pyramid Image Registration Network in Learn2Reg Challenge -- The Learn2Reg 2021 MICCAI Grand Challenge (PIMed Team) -- Fast 3D registration with accurate optimisation and little learning for Learn2Reg 2021 -- Progressive and Coarse-to-fine Network for Medical Image Registration across Phases, Modalities and Patients. -Semi-supervised Multilevel Symmetric Image Registration Method for Magnetic Resonance Whole Brain Images.
    Contained By: Springer Nature eBook
    標題: Diagnostic imaging - Congresses. -
    電子資源: https://doi.org/10.1007/978-3-030-97281-3
    ISBN: 9783030972813
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9440268 電子資源 11.線上閱覽_V 電子書 EB RC78.7.D53 B56 2021 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入