Practical explainable AI using Pytho...
Mishra, Pradeepta.

Linked to FindBook      Google Book      Amazon      博客來     
  • Practical explainable AI using Python = artificial intelligence model explanations using Python-based libraries, extensions, and frameworks /
  • Record Type: Electronic resources : Monograph/item
    Title/Author: Practical explainable AI using Python/ by Pradeepta Mishra.
    Reminder of title: artificial intelligence model explanations using Python-based libraries, extensions, and frameworks /
    Author: Mishra, Pradeepta.
    Published: Berkeley, CA :Apress : : 2022.,
    Description: xviii, 344 p. :ill., digital ;24 cm.
    [NT 15003449]: Chapter 1: Introduction to Model Explainability and Interpretability -- Chapter 2: AI Ethics, Biasness and Reliability -- Chapter 3: Model Explainability for Linear Models Using XAI Components -- Chapter 4: Model Explainability for Non-Linear Models using XAI Components -- Chapter 5: Model Explainability for Ensemble Models Using XAI Components -- Chapter 6: Model Explainability for Time Series Models using XAI Components -- Chapter 7: Model Explainability for Natural Language Processing using XAI Components -- Chapter 8: AI Model Fairness Using What-If Scenario -- Chapter 9: Model Explainability for Deep Neural Network Models -- Chapter 10: Counterfactual Explanations for XAI models -- Chapter 11: Contrastive Explanation for Machine Learning -- Chapter 12: Model-Agnostic Explanations By Identifying Prediction Invariance -- Chapter 13: Model Explainability for Rule based Expert System -- Chapter 14: Model Explainability for Computer Vision.
    Contained By: Springer Nature eBook
    Subject: Python (Computer program language) -
    Online resource: https://doi.org/10.1007/978-1-4842-7158-2
    ISBN: 9781484271582
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9439695 電子資源 11.線上閱覽_V 電子書 EB QA76.73.P98 M57 2022 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login