語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Automating data-driven modelling of ...
~
Khandelwal, Dhruv.
FindBook
Google Book
Amazon
博客來
Automating data-driven modelling of dynamical systems = an evolutionary computation approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Automating data-driven modelling of dynamical systems/ by Dhruv Khandelwal.
其他題名:
an evolutionary computation approach /
作者:
Khandelwal, Dhruv.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xxiii, 229 p. :ill. (some col.), digital ;24 cm.
附註:
"Doctoral thesis accepted by Eindhoven University of Technology, Eindhoven, The Netherlands."
內容註:
Introduction -- The State-of-the-art -- Preliminaries - Evolutionary Algorithms -- Tree Adjoining Grammar -- Performance measures.
Contained By:
Springer Nature eBook
標題:
Dynamics - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-030-90343-5
ISBN:
9783030903435
Automating data-driven modelling of dynamical systems = an evolutionary computation approach /
Khandelwal, Dhruv.
Automating data-driven modelling of dynamical systems
an evolutionary computation approach /[electronic resource] :by Dhruv Khandelwal. - Cham :Springer International Publishing :2022. - xxiii, 229 p. :ill. (some col.), digital ;24 cm. - Springer theses,2190-5061. - Springer theses..
"Doctoral thesis accepted by Eindhoven University of Technology, Eindhoven, The Netherlands."
Introduction -- The State-of-the-art -- Preliminaries - Evolutionary Algorithms -- Tree Adjoining Grammar -- Performance measures.
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
ISBN: 9783030903435
Standard No.: 10.1007/978-3-030-90343-5doiSubjects--Topical Terms:
713504
Dynamics
--Data processing.
LC Class. No.: QA845 / .K53 2022
Dewey Class. No.: 620.10540285
Automating data-driven modelling of dynamical systems = an evolutionary computation approach /
LDR
:02242nmm a2200361 a 4500
001
2297492
003
DE-He213
005
20220203101956.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030903435
$q
(electronic bk.)
020
$a
9783030903428
$q
(paper)
024
7
$a
10.1007/978-3-030-90343-5
$2
doi
035
$a
978-3-030-90343-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA845
$b
.K53 2022
072
7
$a
TJFM
$2
bicssc
072
7
$a
GPFC
$2
bicssc
072
7
$a
TEC004000
$2
bisacsh
072
7
$a
TJFM
$2
thema
082
0 4
$a
620.10540285
$2
23
090
$a
QA845
$b
.K45 2022
100
1
$a
Khandelwal, Dhruv.
$3
3593156
245
1 0
$a
Automating data-driven modelling of dynamical systems
$h
[electronic resource] :
$b
an evolutionary computation approach /
$c
by Dhruv Khandelwal.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xxiii, 229 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5061
500
$a
"Doctoral thesis accepted by Eindhoven University of Technology, Eindhoven, The Netherlands."
505
0
$a
Introduction -- The State-of-the-art -- Preliminaries - Evolutionary Algorithms -- Tree Adjoining Grammar -- Performance measures.
520
$a
This book describes a user-friendly, evolutionary algorithms-based framework for estimating data-driven models for a wide class of dynamical systems, including linear and nonlinear ones. The methodology addresses the problem of automating the process of estimating data-driven models from a user's perspective. By combining elementary building blocks, it learns the dynamic relations governing the system from data, giving model estimates with various trade-offs, e.g. between complexity and accuracy. The evaluation of the method on a set of academic, benchmark and real-word problems is reported in detail. Overall, the book offers a state-of-the-art review on the problem of nonlinear model estimation and automated model selection for dynamical systems, reporting on a significant scientific advance that will pave the way to increasing automation in system identification.
650
0
$a
Dynamics
$x
Data processing.
$3
713504
650
0
$a
Dynamics
$x
Mathematical models.
$3
566519
650
1 4
$a
Control and Systems Theory.
$3
3381515
650
2 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Applied Dynamical Systems.
$3
3538870
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer theses.
$3
1314442
856
4 0
$u
https://doi.org/10.1007/978-3-030-90343-5
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9439384
電子資源
11.線上閱覽_V
電子書
EB QA845 .K53 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入