語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonlinear predictive control using w...
~
SpringerLink (Online service)
FindBook
Google Book
Amazon
博客來
Nonlinear predictive control using wiener models = computationally efficient approaches for polynomial and neural structures /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonlinear predictive control using wiener models/ by Maciej Lawrynczuk.
其他題名:
computationally efficient approaches for polynomial and neural structures /
作者:
Lawrynczuk, Maciej.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xxiii, 343 p. :ill., digital ;24 cm.
內容註:
Introduction to Model Predictive Control -- MPC Algorithms Using Input-Output Wiener Models -- MPC Algorithms Using State-Space Wiener Models -- Conclusions -- Index.
Contained By:
Springer Nature eBook
標題:
Predictive control. -
電子資源:
https://doi.org/10.1007/978-3-030-83815-7
ISBN:
9783030838157
Nonlinear predictive control using wiener models = computationally efficient approaches for polynomial and neural structures /
Lawrynczuk, Maciej.
Nonlinear predictive control using wiener models
computationally efficient approaches for polynomial and neural structures /[electronic resource] :by Maciej Lawrynczuk. - Cham :Springer International Publishing :2022. - xxiii, 343 p. :ill., digital ;24 cm. - Studies in systems, decision and control,v. 3892198-4190 ;. - Studies in systems, decision and control ;v. 389..
Introduction to Model Predictive Control -- MPC Algorithms Using Input-Output Wiener Models -- MPC Algorithms Using State-Space Wiener Models -- Conclusions -- Index.
This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant. A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages of neural Wiener models are demonstrated.
ISBN: 9783030838157
Standard No.: 10.1007/978-3-030-83815-7doiSubjects--Topical Terms:
667592
Predictive control.
LC Class. No.: TJ217.6 / .L38 2022
Dewey Class. No.: 629.8
Nonlinear predictive control using wiener models = computationally efficient approaches for polynomial and neural structures /
LDR
:02352nmm a2200349 a 4500
001
2296220
003
DE-He213
005
20210921153603.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030838157
$q
(electronic bk.)
020
$a
9783030838140
$q
(paper)
024
7
$a
10.1007/978-3-030-83815-7
$2
doi
035
$a
978-3-030-83815-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ217.6
$b
.L38 2022
072
7
$a
TJFM
$2
bicssc
072
7
$a
TEC004000
$2
bisacsh
072
7
$a
TJFM
$2
thema
072
7
$a
TJFD
$2
thema
082
0 4
$a
629.8
$2
23
090
$a
TJ217.6
$b
.L424 2022
100
1
$a
Lawrynczuk, Maciej.
$3
2058248
245
1 0
$a
Nonlinear predictive control using wiener models
$h
[electronic resource] :
$b
computationally efficient approaches for polynomial and neural structures /
$c
by Maciej Lawrynczuk.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xxiii, 343 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in systems, decision and control,
$x
2198-4190 ;
$v
v. 389
505
0
$a
Introduction to Model Predictive Control -- MPC Algorithms Using Input-Output Wiener Models -- MPC Algorithms Using State-Space Wiener Models -- Conclusions -- Index.
520
$a
This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant. A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages of neural Wiener models are demonstrated.
650
0
$a
Predictive control.
$3
667592
650
1 4
$a
Control, Robotics, Mechatronics.
$3
1002220
650
2 4
$a
Complexity.
$3
893807
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Studies in systems, decision and control ;
$v
v. 389.
$3
3590684
856
4 0
$u
https://doi.org/10.1007/978-3-030-83815-7
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9438123
電子資源
11.線上閱覽_V
電子書
EB TJ217.6 .L38 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入