語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High-Fidelity Numerical Modelling of...
~
Windt, Christian.
FindBook
Google Book
Amazon
博客來
High-Fidelity Numerical Modelling of Ocean Wave Energy Converters.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
High-Fidelity Numerical Modelling of Ocean Wave Energy Converters./
作者:
Windt, Christian.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
455 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-10, Section: B.
Contained By:
Dissertations Abstracts International82-10B.
標題:
Simulation. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28392480
ISBN:
9798708714978
High-Fidelity Numerical Modelling of Ocean Wave Energy Converters.
Windt, Christian.
High-Fidelity Numerical Modelling of Ocean Wave Energy Converters.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 455 p.
Source: Dissertations Abstracts International, Volume: 82-10, Section: B.
Thesis (Ph.D.)--National University of Ireland, Maynooth (Ireland), 2020.
This item must not be sold to any third party vendors.
The exploitation of ocean wave energy as a renewable energy source is a challenging task. However, once economically viable, wave energy can make a significant contribution to the global renewable energy mix and, thereby, aid the fight against climate change. To support this action, researchers and developers devise and optimise wave energy converters, employing complementary analysis in physical and numerical wave tanks, as well as during open ocean trials.Compared to physical wave tanks, numerical wave tanks provide an excellent numerical test-bed, allowing the investigation of different device designs and scales, with the ability to passively measure relevant variables at arbitrary locations throughout the numerical domain.Generally, numerical wave tanks can achieve different levels of fidelity, at different levels of computational cost. At the lower end of the fidelity spectrum, numerical wave tanks based on linear potential flow theory assume linear conditions (small wave amplitudes and body motions) and are computationally efficient tools for, e.g., early stage design. However, the linear assumptions are pushed beyond the limits of validity when large body motions or non-linear free surface deformations occur. In contrast, at the upper end of the fidelity spectrum, numerical wave tanks based on computational fluid dynamics can capture all relevant hydrodynamic non-linearities and produce high resolution data sets, but require substantially more computational resources.Reviewing the available literature of high-fidelity numerical modelling of wave energy converters, knowledge gaps can be identified, hampering the exploitation of the fidelity of the computational fluids dynamics framework. Focusing on high-fidelity numerical modelling of wave energy converters, this thesis aims to fill some of the identified gaps. In particular, this thesis investigates the aspects of numerical wave generation and absorption, model validation, dynamic mesh motion methods, the flow field around devices, scaling effects, and the assessment of energy maximising controllers for wave energy converters within computational fluid dynamics based numerical wave tanks. Ultimately, this thesis highlights the potential of high-fidelity numerical models of wave energy converters to support device development, but also shows the complexity of this modelling framework. With the additional knowledge, gained through the work presented in this thesis, steps towards truly high-fidelity, wave-to-wire, models of wave energy converters can be taken to push devices towards commercial viability and, ultimately, transform wave energy from an untapped energy source to a significant contributor to the global renewable energy mix.
ISBN: 9798708714978Subjects--Topical Terms:
644748
Simulation.
Subjects--Index Terms:
Wave energy
High-Fidelity Numerical Modelling of Ocean Wave Energy Converters.
LDR
:06728nmm a2200373 4500
001
2285185
005
20211129124001.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798708714978
035
$a
(MiAaPQ)AAI28392480
035
$a
(MiAaPQ)Maynooth13899
035
$a
AAI28392480
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Windt, Christian.
$3
3564470
245
1 0
$a
High-Fidelity Numerical Modelling of Ocean Wave Energy Converters.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
455 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-10, Section: B.
500
$a
Advisor: Ringwood, John V.
502
$a
Thesis (Ph.D.)--National University of Ireland, Maynooth (Ireland), 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
The exploitation of ocean wave energy as a renewable energy source is a challenging task. However, once economically viable, wave energy can make a significant contribution to the global renewable energy mix and, thereby, aid the fight against climate change. To support this action, researchers and developers devise and optimise wave energy converters, employing complementary analysis in physical and numerical wave tanks, as well as during open ocean trials.Compared to physical wave tanks, numerical wave tanks provide an excellent numerical test-bed, allowing the investigation of different device designs and scales, with the ability to passively measure relevant variables at arbitrary locations throughout the numerical domain.Generally, numerical wave tanks can achieve different levels of fidelity, at different levels of computational cost. At the lower end of the fidelity spectrum, numerical wave tanks based on linear potential flow theory assume linear conditions (small wave amplitudes and body motions) and are computationally efficient tools for, e.g., early stage design. However, the linear assumptions are pushed beyond the limits of validity when large body motions or non-linear free surface deformations occur. In contrast, at the upper end of the fidelity spectrum, numerical wave tanks based on computational fluid dynamics can capture all relevant hydrodynamic non-linearities and produce high resolution data sets, but require substantially more computational resources.Reviewing the available literature of high-fidelity numerical modelling of wave energy converters, knowledge gaps can be identified, hampering the exploitation of the fidelity of the computational fluids dynamics framework. Focusing on high-fidelity numerical modelling of wave energy converters, this thesis aims to fill some of the identified gaps. In particular, this thesis investigates the aspects of numerical wave generation and absorption, model validation, dynamic mesh motion methods, the flow field around devices, scaling effects, and the assessment of energy maximising controllers for wave energy converters within computational fluid dynamics based numerical wave tanks. Ultimately, this thesis highlights the potential of high-fidelity numerical models of wave energy converters to support device development, but also shows the complexity of this modelling framework. With the additional knowledge, gained through the work presented in this thesis, steps towards truly high-fidelity, wave-to-wire, models of wave energy converters can be taken to push devices towards commercial viability and, ultimately, transform wave energy from an untapped energy source to a significant contributor to the global renewable energy mix.
520
$a
Die Nutzung von Meereswellen als Quelle erneuerbarer Energien ist eine herausfordernde Aufgabe. Jedoch kann eine wirtschaftlich rentable Nutzung von Wellenenergie einen wesentlichen Beitrag zum globalen erneuerbaren Energiemix leisten und damit den Kampf gegen den Klimawandel unterstutzen. Um diese Ziele zu erreichen, fuhren Forscher und Entwickler stetige Optimierungen an Wellenenergiekraftwerken mit Hilfe sich erganzender Analysen in physikalischen und numerischen Wellentanks durch. Im Vergleich zu physikalischen Wellentanks bieten numerische Wellentanks einen hervorragenden Prufstand fur die Untersuchung verschiedener Anlagendesigns und -skalen mit der Moglichkeit der passiven Messung relevanter Variablen an beliebigen Stellen im gesamten numerischen Berechnungsgebiet.Numerische Wellentanks konnen unterschiedliche Genauigkeitsstufen mit unterschiedlichen Rechenkosten erreichen. Am unteren Ende des Genauigkeitsspektrums liegen Wellentanks die auf der Theorie linearer Potentialstromung basieren. Unter der Annahme linearer Randbedingungen (kleine Wellenamplituden und Strukturbewegungen) dienen diese Verfahren als rechnerisch effiziente Werkzeuge in fruhen Entwicklungsstadien. Die linearen Annahmen werden jedoch verletzt, wenn grose Strukturbewegungen oder nichtlineare Verformungen der freien Wasseroberflache auftreten. Im Gegensatz dazu konnen Wellentanks am oberen Ende des Genauigkeitsspektrums, durch die Berechung mittels numerischer Stromungsmechanik, alle relevanten hydrodynamischen Nichtlinearitaten erfassen. Diese erfordern jedoch wesentlich mehr Rechenressourcen. In der Literatur finden sich jedoch erhebliche Wissenslucken im Bereich der numerischen Modellierung von Wellenenergiekraftwerken, welche die optimale Berechnung mittels numerischer Stromungsmechanik behindert. Vor diesem Hintergrund leistet diese Dissertation einen Beitrag, die identifizierten Wissenslucken im Bereich der hochauflosenden numerischen Modellierung von Wellenenergiekraftwerken zu schliesen. Insbesondere befasst sich diese Arbeit mit den Aspekten der numerischen Wellenerzeugung und Absorption, Modellvalidierung, dynamischer Gitterbewegung, dem Stromungsfeld um Anlagen, Skalierungseffekten und der Bewertung von Regelungstechniken.Letztendlich zeigt diese Dissertation das Potenzial hochauflosender numerischer Verfahren fur die Forschung und Entwicklung von Wellenenergiekraftwerken, verdeutlicht allerdings auch die Komplexitat dieser Berechnungsmethode. Das zusatzlichen Wissen, das durch die im Rahmen dieser Dissertation durchgefuhrten Studien gewonnen wurde, ermoglicht die Nutztung hochauflosender numerischer Verfahren um Wellenenergiekraftwerke in Richtung kommerzieller Nutzung zu treiben und mit der Nutzung von Wellenenergie einen wesentlichen Beitrag zum erneuerbarer Energienmix zu leisten.
590
$a
School code: 8741.
650
4
$a
Simulation.
$3
644748
650
4
$a
Ocean engineering.
$3
660731
650
4
$a
Energy.
$3
876794
650
4
$a
Wave power.
$3
3564471
650
4
$a
Fluid mechanics.
$3
528155
650
4
$a
Systems design.
$3
3433840
653
$a
Wave energy
653
$a
Renewable energy
653
$a
Energy conversion
690
$a
0547
690
$a
0204
690
$a
0363
710
2
$a
National University of Ireland, Maynooth (Ireland).
$3
3554182
773
0
$t
Dissertations Abstracts International
$g
82-10B.
790
$a
8741
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28392480
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9436918
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入