語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bulk and Surface Investigation of Na...
~
Valdes, Nicholas.
FindBook
Google Book
Amazon
博客來
Bulk and Surface Investigation of Narrow Bandgap Cu(In,Ga)Se2 Solar Cells.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bulk and Surface Investigation of Narrow Bandgap Cu(In,Ga)Se2 Solar Cells./
作者:
Valdes, Nicholas.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
234 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-10, Section: B.
Contained By:
Dissertations Abstracts International82-10B.
標題:
Materials science. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28316146
ISBN:
9798597004815
Bulk and Surface Investigation of Narrow Bandgap Cu(In,Ga)Se2 Solar Cells.
Valdes, Nicholas.
Bulk and Surface Investigation of Narrow Bandgap Cu(In,Ga)Se2 Solar Cells.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 234 p.
Source: Dissertations Abstracts International, Volume: 82-10, Section: B.
Thesis (Ph.D.)--University of Delaware, 2021.
This item must not be sold to any third party vendors.
Single-junction solar cell efficiency is limited to 33%, in which the majority of losses are due to thermalization of carriers. Thermalization can be reduced by creating solar cells with two junctions, or tandem solar cells, in which a wide bandgap (Eg) solar cell on top absorbs high energy light and a narrow Eg solar cell on bottom absorbs the remaining light. The two most commercially viable candidates for the bottom cell are Si and Cu(In,Ga)Se2 (CIGS). CIGS is well suited to be the light absorber in a bottom cell of a tandem solar cell due to its high absorption coefficient and tunability of its bandgap to the ideal 1.0 eV. However, historically there has been a large efficiency difference between CIGS solar cells with narrow Eg = 1.0 eV with conversion efficiency (η) = 15.0% compared to standard CIGS solar cells with Eg = 1.2 eV and η = 21.7% in 2015, due to a deficit in the open-circuit voltage (VOC). This dissertation addresses the fundamental differences between narrow and standard Eg CIGS and how to improve the efficiency of narrow Eg CIGS solar cells.CuInSe2 (CIS) solar cells were alloyed with small amounts of Ga and Ag with the aim of improving bulk properties. Ga alloying leads to increased VOC and decreased short-circuit current (JSC) due to increased Eg. Ag alloyed devices lead to improved long wavelength current collection relevant to bottom cells in tandems but suffer from low VOC due to interface recombination. Ga alloying was also used to form a gradient in Ga/(Ga+In) composition throughout the depth of the absorber, a strategy used in standard CIGS solar cells to improve current collection, while keeping the surface Ga-free. The maximum substrate temperature (Tsub) during deposition was discovered to have significant influence on the Ga/(Ga+In) depth profile and device performance. Absorber layers grown at Tsub = 580°C have high VOC but diffusion of Ga towards the front which reduces JSC and fill factor (FF), whereas a lower Tsub = 500°C leads to an ideal Ga/(Ga+In) profile with higher JSC and FF, but less VOC increase. The VOC increases in graded samples were not understood by changes in Eg or charge carrier concentration, so SCAPS-1D was used to simulate the device performance. The simulations showed that recombination at the back contact reduces CIS performance even at standard film thickness but is prevented with a Ga gradient. It was further revealed that reducing defects at the front region of devices with a gradient is important for obtaining the highest VOC.The quality of CIGS absorber layers can be improved with in situ alkali-fluoride surface treatments after the absorber deposition. X-ray photoelectron spectroscopy measurements on KF-treated CIGS revealed differences in F products and surface Cu concentration related to the presence of Ga. However, similar device performance and CdS buffer growth are seen in KF-treated CIGS despite these chemical differences. CIS+KF devices demonstrate improved VOC, doping, and tolerance of thin CdS layers, whereas Ag alloyed ACIS+KF devices have low VOC due to additional interface recombination.Finally, processing modifications to improve the VOC and JSC of CIS+KF led to a certified record CIS solar cell η = 16.0%. Higher efficiency narrow Eg CIGS solar cells were enabled by a Ga gradient reducing the back contact recombination that limits the CIS solar cell efficiency, along with alkali fluoride treatments to improve the p-n junction, and the champion device combined a Ga gradient + NaF treatment to give η = 17.4%. These improvements will allow for CIGS to be used as a bottom cell in a tandem solar cell.
ISBN: 9798597004815Subjects--Topical Terms:
543314
Materials science.
Subjects--Index Terms:
Narrow bandgap
Bulk and Surface Investigation of Narrow Bandgap Cu(In,Ga)Se2 Solar Cells.
LDR
:04701nmm a2200337 4500
001
2282170
005
20211001100714.5
008
220723s2021 ||||||||||||||||| ||eng d
020
$a
9798597004815
035
$a
(MiAaPQ)AAI28316146
035
$a
AAI28316146
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Valdes, Nicholas.
$3
3560930
245
1 0
$a
Bulk and Surface Investigation of Narrow Bandgap Cu(In,Ga)Se2 Solar Cells.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
234 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-10, Section: B.
500
$a
Advisor: Shafarman, William N.
502
$a
Thesis (Ph.D.)--University of Delaware, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
Single-junction solar cell efficiency is limited to 33%, in which the majority of losses are due to thermalization of carriers. Thermalization can be reduced by creating solar cells with two junctions, or tandem solar cells, in which a wide bandgap (Eg) solar cell on top absorbs high energy light and a narrow Eg solar cell on bottom absorbs the remaining light. The two most commercially viable candidates for the bottom cell are Si and Cu(In,Ga)Se2 (CIGS). CIGS is well suited to be the light absorber in a bottom cell of a tandem solar cell due to its high absorption coefficient and tunability of its bandgap to the ideal 1.0 eV. However, historically there has been a large efficiency difference between CIGS solar cells with narrow Eg = 1.0 eV with conversion efficiency (η) = 15.0% compared to standard CIGS solar cells with Eg = 1.2 eV and η = 21.7% in 2015, due to a deficit in the open-circuit voltage (VOC). This dissertation addresses the fundamental differences between narrow and standard Eg CIGS and how to improve the efficiency of narrow Eg CIGS solar cells.CuInSe2 (CIS) solar cells were alloyed with small amounts of Ga and Ag with the aim of improving bulk properties. Ga alloying leads to increased VOC and decreased short-circuit current (JSC) due to increased Eg. Ag alloyed devices lead to improved long wavelength current collection relevant to bottom cells in tandems but suffer from low VOC due to interface recombination. Ga alloying was also used to form a gradient in Ga/(Ga+In) composition throughout the depth of the absorber, a strategy used in standard CIGS solar cells to improve current collection, while keeping the surface Ga-free. The maximum substrate temperature (Tsub) during deposition was discovered to have significant influence on the Ga/(Ga+In) depth profile and device performance. Absorber layers grown at Tsub = 580°C have high VOC but diffusion of Ga towards the front which reduces JSC and fill factor (FF), whereas a lower Tsub = 500°C leads to an ideal Ga/(Ga+In) profile with higher JSC and FF, but less VOC increase. The VOC increases in graded samples were not understood by changes in Eg or charge carrier concentration, so SCAPS-1D was used to simulate the device performance. The simulations showed that recombination at the back contact reduces CIS performance even at standard film thickness but is prevented with a Ga gradient. It was further revealed that reducing defects at the front region of devices with a gradient is important for obtaining the highest VOC.The quality of CIGS absorber layers can be improved with in situ alkali-fluoride surface treatments after the absorber deposition. X-ray photoelectron spectroscopy measurements on KF-treated CIGS revealed differences in F products and surface Cu concentration related to the presence of Ga. However, similar device performance and CdS buffer growth are seen in KF-treated CIGS despite these chemical differences. CIS+KF devices demonstrate improved VOC, doping, and tolerance of thin CdS layers, whereas Ag alloyed ACIS+KF devices have low VOC due to additional interface recombination.Finally, processing modifications to improve the VOC and JSC of CIS+KF led to a certified record CIS solar cell η = 16.0%. Higher efficiency narrow Eg CIGS solar cells were enabled by a Ga gradient reducing the back contact recombination that limits the CIS solar cell efficiency, along with alkali fluoride treatments to improve the p-n junction, and the champion device combined a Ga gradient + NaF treatment to give η = 17.4%. These improvements will allow for CIGS to be used as a bottom cell in a tandem solar cell.
590
$a
School code: 0060.
650
4
$a
Materials science.
$3
543314
650
4
$a
Alternative energy.
$3
3436775
650
4
$a
Electrical engineering.
$3
649834
653
$a
Narrow bandgap
653
$a
Solar cells
690
$a
0794
690
$a
0544
690
$a
0363
710
2
$a
University of Delaware.
$b
Materials Science and Engineering.
$3
3194990
773
0
$t
Dissertations Abstracts International
$g
82-10B.
790
$a
0060
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28316146
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9433903
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入