語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning for Small Molecule ...
~
Liu, Bowen.
FindBook
Google Book
Amazon
博客來
Machine Learning for Small Molecule Lead Optimization.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine Learning for Small Molecule Lead Optimization./
作者:
Liu, Bowen.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
136 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-05, Section: B.
Contained By:
Dissertations Abstracts International82-05B.
標題:
Chemistry. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28241800
ISBN:
9798684640896
Machine Learning for Small Molecule Lead Optimization.
Liu, Bowen.
Machine Learning for Small Molecule Lead Optimization.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 136 p.
Source: Dissertations Abstracts International, Volume: 82-05, Section: B.
Thesis (Ph.D.)--Stanford University, 2020.
This item must not be sold to any third party vendors.
The development of small molecule drugs is a lengthy and expensive process that could potentially be improved by new technologies. Lead optimization is an important part of small molecule drug discovery, where initial hit molecules are gradually developed into suitable drug candidates. It can be described as an iterative cycle of design, make and test phases, which can be further broken down into a series of concrete sub-problems, namely: molecular property prediction, molecule generation, chemical synthesis planning, experimental chemical synthesis, and experimental testing. This thesis explores machine learning methods to tackle a few of the sub-problems in small molecule lead optimization, with a focus on the early design phases.
ISBN: 9798684640896Subjects--Topical Terms:
516420
Chemistry.
Subjects--Index Terms:
Small molecule drug discovery
Machine Learning for Small Molecule Lead Optimization.
LDR
:01972nmm a2200373 4500
001
2281908
005
20210927083426.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798684640896
035
$a
(MiAaPQ)AAI28241800
035
$a
(MiAaPQ)STANFORDpz139ty9723
035
$a
AAI28241800
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Liu, Bowen.
$3
3431868
245
1 0
$a
Machine Learning for Small Molecule Lead Optimization.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
136 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-05, Section: B.
500
$a
Advisor: Leskovec, Jurij;Kim, Peter;Pande, Vijay; Wender, Paul A.
502
$a
Thesis (Ph.D.)--Stanford University, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
The development of small molecule drugs is a lengthy and expensive process that could potentially be improved by new technologies. Lead optimization is an important part of small molecule drug discovery, where initial hit molecules are gradually developed into suitable drug candidates. It can be described as an iterative cycle of design, make and test phases, which can be further broken down into a series of concrete sub-problems, namely: molecular property prediction, molecule generation, chemical synthesis planning, experimental chemical synthesis, and experimental testing. This thesis explores machine learning methods to tackle a few of the sub-problems in small molecule lead optimization, with a focus on the early design phases.
590
$a
School code: 0212.
650
4
$a
Chemistry.
$3
516420
650
4
$a
Artificial intelligence.
$3
516317
650
4
$a
Computational chemistry.
$3
3350019
653
$a
Small molecule drug discovery
653
$a
Molecular property prediction
653
$a
Molecule generation
653
$a
Chemical synthesis planning
690
$a
0800
690
$a
0219
690
$a
0485
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
82-05B.
790
$a
0212
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28241800
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9433641
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入