語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Conversion and Braiding Rules of Ban...
~
Sun, Xiaoqi.
FindBook
Google Book
Amazon
博客來
Conversion and Braiding Rules of Band-Structure Nodes.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Conversion and Braiding Rules of Band-Structure Nodes./
作者:
Sun, Xiaoqi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
106 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
Contained By:
Dissertations Abstracts International82-02B.
標題:
Theoretical physics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28104060
ISBN:
9798662512139
Conversion and Braiding Rules of Band-Structure Nodes.
Sun, Xiaoqi.
Conversion and Braiding Rules of Band-Structure Nodes.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 106 p.
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
Thesis (Ph.D.)--Stanford University, 2020.
This item must not be sold to any third party vendors.
Topological semimetals are characterized by topologically protected band-structure nodes. One prominent example is the Weyl semimetal, characterized by Weyl points carrying topological Chern numbers. In this dissertation, we explore the topology of band-structure nodes with three ingredients: crystal symmetry, non-Hermiticity and periodic driving. First, we show that point group symmetry facilitates a new type of topological invariant from relative homotopy theory, which determines the rules for converting generic band nodes to nodes at high-symmetry momenta (and vice versa) as we tune the lattice Hamiltonian. Secondly, we show that exceptional lines in non-Hermitian bands act as Alice strings. This is manifested by the reversal of the topological charge of a node, if it is braided around an exceptional line. Finally, we discuss the Nielsen-Ninomiya no-go theorem in Floquet bands and the possibility of simulating chiral Weyl particles in the adiabatic limit.
ISBN: 9798662512139Subjects--Topical Terms:
2144760
Theoretical physics.
Subjects--Index Terms:
Weyl semimetal
Conversion and Braiding Rules of Band-Structure Nodes.
LDR
:02044nmm a2200325 4500
001
2281741
005
20210920103356.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798662512139
035
$a
(MiAaPQ)AAI28104060
035
$a
(MiAaPQ)STANFORDzw257ky8648
035
$a
AAI28104060
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Sun, Xiaoqi.
$0
(orcid)0000-0003-1637-4771
$3
3284213
245
1 0
$a
Conversion and Braiding Rules of Band-Structure Nodes.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
106 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
500
$a
Advisor: Qi, Xiaoliang;Fan, Shanhui;Kivelson, Steven.
502
$a
Thesis (Ph.D.)--Stanford University, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Topological semimetals are characterized by topologically protected band-structure nodes. One prominent example is the Weyl semimetal, characterized by Weyl points carrying topological Chern numbers. In this dissertation, we explore the topology of band-structure nodes with three ingredients: crystal symmetry, non-Hermiticity and periodic driving. First, we show that point group symmetry facilitates a new type of topological invariant from relative homotopy theory, which determines the rules for converting generic band nodes to nodes at high-symmetry momenta (and vice versa) as we tune the lattice Hamiltonian. Secondly, we show that exceptional lines in non-Hermitian bands act as Alice strings. This is manifested by the reversal of the topological charge of a node, if it is braided around an exceptional line. Finally, we discuss the Nielsen-Ninomiya no-go theorem in Floquet bands and the possibility of simulating chiral Weyl particles in the adiabatic limit.
590
$a
School code: 0212.
650
4
$a
Theoretical physics.
$3
2144760
653
$a
Weyl semimetal
653
$a
Point group symmetry
690
$a
0753
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
82-02B.
790
$a
0212
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28104060
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9433474
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入